# Towards the observed galaxy bispectrum in the weak field approximation

### Lina Julieth Castiblanco Tolosa

Based on : L.C, R.Gannouji, J.Noreña, C.Stahl (2018), J.Calles, L.C, J.Noreña, C.Stahl (2019)



## CoCo 2020



Inflation provides a mechanism to generate primordial perturbations which are the seed to structure formation.

Single field inflation?



Initial conditions: Gaussian, adiabatic and almost scale invariant. Multi-field inflation? Exotic Inflation?



Predict large non-Gaussianity.

One way to test the field content during inflation in a model independent way is through the consistency relations.

- $\bullet\,$  Inflationary three point function does not have terms diverging like  $q^{-3}$  . Maldacena (2002), Creminelli.et.al (2004)
- Valid for single field models. Bravo.et.al. (2017)
- Diverging terms like  $q^{-2}$  are also absent. Creminelli.et.al.(2011)
- The consistency relation for the large scale structure is a continuation of the single field consistency relation. Creminelli.et.al (2013)

Violations to the consistency relations will rule out all the single field inflationary models.

## We are in the era of precision cosmology.



Euclid http://sci.esa.int/euclid/

Dark matter is considered as a barotropic irrotational perfect fluid

 $T_{\mu\nu} = \bar{\rho} \left( 1 + \delta \right) u_{\mu} u_{\nu}$ 

## Perturbed FLRW metric

$$ds^{2} = -(1+2\phi) dt^{2} + 2\omega_{i} dt dx^{i} + a(t)^{2} \left[ (1-2\psi) \delta_{ij} + \gamma_{ij} \right] dx^{i} dx^{j}$$

$$\omega_i = \partial_i \omega + w_i \Longrightarrow \partial_i w_i = 0, \qquad \gamma_{ii} = \partial_i \gamma_{ij} = 0$$

• Weak field approximation:

$$\phi \sim \psi \sim \omega \sim \left(\frac{H^2}{\nabla^2}\right) = \mathcal{O}(\epsilon) \ll 1, \qquad w_i \sim \mathcal{O}(\epsilon^{3/2}), \quad \gamma_{ij} \sim \mathcal{O}(\epsilon^2)$$

• Gravitational field and velocity are small at small scales

$$\psi \sim \frac{H^2}{\nabla^2} \sim 10^{-5}, \qquad u^i \sim \frac{H}{\nabla} \sim 10^{-3}$$

## Comoving gauge

• Proper time coincides with time coordinate along the fluid.





• Comoving (synchronous) observer with the fluid.

Yoo.et.al. (2009)

Continuity equation

$$\dot{\delta} + \theta = -\partial_i \left( \delta u^i \right) + S_\delta \left[ \psi, \delta, u^i \right]$$

Mass conservation

Euler equation

$$\dot{\theta} + 2H\theta + \frac{3}{2}H^2\delta = \partial_j \left( u^i \partial_j u^i \right) + S_\theta \left[ \psi, \delta, u^i \right]$$

Momentum conservation

#### Einstein equations

$$\nabla^2 \psi = \frac{5}{2} H^2 \delta + S_{\psi}[\psi, \delta, \theta] \qquad \nabla^2 w_i = S_w[\psi, \delta, \theta]$$

• Separation between Newtonian result and relativistic (corrections suppressed by  $\epsilon = \frac{H^2}{\nabla^2}$ ):

$$\delta = \delta_N + \delta_R, \qquad u^i = u^i_N + \left(u^i_R + u^i_T\right), \qquad \theta = \partial_i u^i$$

## Matter perturbation dynamics

• Evolution equation for matter perturbations.

$$\ddot{\delta}(t,\boldsymbol{k}) + 2H\dot{\delta}(t,\boldsymbol{k}) - \frac{3}{2}H^2\delta(t,\boldsymbol{k}) = S(t,\boldsymbol{k})[\psi,\delta,u^i]$$

• Solving with standard perturbation theory,  $\delta \ll 1$  and  $\theta \ll 1$ 

The solution to fluid equations is an expansion in powers of the linear density perturbation

$$\delta(t, \mathbf{k}) = \sum_{n=1}^{\infty} a^n(t) \int_{\mathbf{k}_1 \cdots \mathbf{k}_n} (2\pi)^3 \delta_D(\mathbf{k} - \mathbf{k}_1 \cdots n) \left[ F_n(\mathbf{k}_1, \cdots, \mathbf{k}_n) + a^2(t) H^2(t) F_n^R(\mathbf{k}_1, \cdots, \mathbf{k}_n) \right] \delta_\ell(\mathbf{k}_1) \cdots \delta_\ell(\mathbf{k}_n)$$

• During matter domination  $H^2 \sim \frac{1}{a^3}$ 

# Initial conditions

- Initial conditions are taken to match the full GR calculation to leading order. Boubekeur.et.al (2008)
- Initial conditions need to be fixed up to second order.
- Higher order initial conditions are subdominant with respect to the source.

$$F_2^R(\boldsymbol{k}_1, \boldsymbol{k}_2) = \left( -\frac{5}{2} \frac{\boldsymbol{k}_1^2 + \boldsymbol{k}_2^2}{\boldsymbol{k}_1^2 \boldsymbol{k}_2^2} + \frac{5}{4} \frac{\boldsymbol{k}_1 \cdot \boldsymbol{k}_2}{\boldsymbol{k}_1^2 \boldsymbol{k}_2^2} \right)$$

Has the same behavior as:

Primordial non-Gaussianity of the local type  $\psi_o = \psi_G + f_{NL}\psi_G^2 \Longrightarrow F_2^{NL}(\mathbf{k}_1, \mathbf{k}_2) = -\frac{3}{2} \frac{\mathbf{k}_1^2 + \mathbf{k}_2^2}{\mathbf{k}_1^2 \mathbf{k}_2^2}$ 

# Correlation functions for matter perturbations

#### Power spectrum up to one loop

$$\langle \delta(\mathbf{k}_1) \delta(\mathbf{k}_2) \rangle = (2\pi)^3 \delta_D(\mathbf{k}_{12}) P(k_1)$$

$$P(k) = P_{11}(k) + P_{22}(k) + P_{13}(k)$$



#### Bispectrum up to one loop

$$\langle \delta(\mathbf{k}_1) \delta(\mathbf{k}_2) \delta(\mathbf{k}_3) \rangle = (2\pi)^3 \delta_D(\mathbf{k}_{123}) B(\mathbf{k}_1, \mathbf{k}_2, \mathbf{k}_3)$$

$$B(\mathbf{k}_1, \mathbf{k}_2, \mathbf{k}_3) = B_{211} + B_{321} + B_{222} + B_{411}$$





• Galaxy formation is a local processes.

- Expansion in terms of second derivatives of the gravitational potential  $\nabla^2 \psi \sim \delta$ .
- Galaxies moves with dark matter fluid

₩

Neglect bias velocity.

## Lagrangias bias expansion $\Longrightarrow$ Adiabatic initial conditions

Building blocks in terms of the extrinsic curvature of the constant-time hypersurfaces, and the matter density contrast.

$$\delta_g(a_*) = \sum_{n=1}^4 \frac{b_n^*}{n! a_*^n} \delta^n + \sum_{n=2}^4 \frac{b_{s^n}^*}{a_*^n} (S^n) + \frac{b_{\delta s^2}^*}{a_*^3} (S^2) \delta + \frac{b_{\delta^2 s^2}^*}{a_*^4} (S^2) \delta^2 + \frac{b_{\delta s^3}^*}{a_*^4} (S^3) \delta + \frac{b_{(s^2)^2}^*}{a_*^4} (S^2)^2 \\S_i^i \equiv (K_{\ell}^\ell \delta_i^i / 3 - K_{ij}^i) / H^2$$

# Galaxy bias evolution

Conserved number of galaxies

$$\dot{\delta}_g + \theta = -\partial_i \left( \delta_g u^i \right) + S_{\delta_g} \left[ \psi, \delta_g, u^i \right]$$

At first order:  

$$\delta_g(\eta_*) = b_1^* \delta_\ell \Longrightarrow \delta_g^{(1)} = a \delta_\ell \left(1 + \frac{b_1^*}{a}\right)$$

## Eulerian Galaxy bias up to fourth order in perturbations

$$\delta_g(\mathbf{k}, a) = \delta(\mathbf{k}, a) + \sum_{n=1}^{\infty} a^n \int_{\mathbf{k}_1 \cdots \mathbf{k}_n} \delta_D(\mathbf{k} - \mathbf{k}_1 \cdots n) \sum_{\mathcal{O}} b_{\mathcal{O}}^{\mathcal{O}} M_n^{\mathcal{O}}(\mathbf{k}_1, \cdots, \mathbf{k}_n, a) \delta_\ell(\mathbf{k}_1) \cdots \delta_\ell(\mathbf{k}_n)$$
$$M_n^{\mathcal{O}}(\mathbf{k}, \eta) = M_n^{\mathcal{O}, N}(\mathbf{k}) + a^2 H^2 M_n^{\mathcal{O}, R}(\mathbf{k})$$

## Renormalization of the bias operators

The bias solution  $\delta_g = \delta + \mathcal{O}$  generates correlations functions which have divergences at large scales coming from the composed operators  $\mathcal{O}$ .

Renormalization condition

$$\lim_{\boldsymbol{q}_{i}\to0}\left\langle \left[\mathcal{O}_{\boldsymbol{k}}\right]_{\Lambda}\delta_{\boldsymbol{q}_{1}}^{(1)}\cdots\delta_{\boldsymbol{q}_{n}}^{(1)}\right\rangle =\left\langle \left[\mathcal{O}_{\boldsymbol{k}}\right]\delta_{\boldsymbol{q}_{1}}^{(1)}\cdots\delta_{\boldsymbol{q}_{n}}^{(1)}\right\rangle_{\text{tree}}$$
Assassi.et.al (2014)

Renormalization for the operator proportional to  $b_2^*$ 

$$\frac{b_2^*}{2a_*^2} \left\langle \delta^2 \right\rangle = \frac{1}{2} b_2^* \int_{\boldsymbol{q}} P_L(\boldsymbol{q}) = \frac{1}{2} b_2^* \sigma_{\Lambda}^2(\boldsymbol{q})$$

$$\frac{1}{2a^2}b_2^*\lim_{k\to 0}\left\langle\delta_\ell(k)\delta^2(-k)\right\rangle' = \left(-\frac{5}{k^2}\sigma^2(\Lambda) - 5\sigma_{-2}^2(\Lambda)\right)b_2^*a^3H_*^2P(k)$$
$$\left[\frac{1}{2a_*^2}b_2^*\delta^2\right]_{\Lambda} = \frac{1}{2a_*^2}b_2^*\delta^2 - \frac{1}{2}b_2^*\sigma^2 + \frac{5}{k^2}b_2^*\sigma^2\delta_\ell + 5b_2^*a_*^3H_*^2\sigma_{-2}^2\delta_\ell$$

The comoving physical cutoff scale is modified by the presence of the long-wavelength perturbation  $\sigma(\Lambda_{\text{phy}}) = \left(1 - \frac{10}{k^2} \delta_\ell\right)$ . de Putter.et.al (2015)

# Renormalization for the evolved bias expansion

Counter-terms for the evolved bias solution are obtained by evolving renormalized operators and subtracting extra cut-off dependence due to non-linear evolution.

$$\begin{array}{c} \langle \mathcal{O}(\boldsymbol{k},a)\rangle = 0 \\ M_0^{\mathcal{O},\mathrm{c.t}}(\boldsymbol{k},a) \end{array} \end{array} \begin{array}{c} \langle \mathcal{O}(\boldsymbol{k},a)\delta_{\ell}(-\boldsymbol{k})\rangle \\ M_1^{\mathcal{O},\mathrm{c.t}}(\boldsymbol{k},a) \end{array} \end{array} \begin{array}{c} \langle \mathcal{O}(\boldsymbol{k},a)\delta_{\ell}(\boldsymbol{q}_1)\delta_{\ell}(\boldsymbol{q}_2)\rangle \\ M_2^{\mathcal{O},\mathrm{c.t}}(\boldsymbol{k},a) \end{array}$$

Counter-terms contribute up to tree level to the galaxy correlation functions.

$$P_g^{c.t} = 2\sum_{\mathcal{O}} b_{\mathcal{O}}^{\mathcal{L}} M_1^{\mathcal{O}, c.t.}(\boldsymbol{k}) P_L(\boldsymbol{k})$$

$$\begin{split} B_{g}^{c.t.}(\pmb{k}_{1},\pmb{k}_{2},\pmb{k}_{3}) = & 2\sum_{\mathcal{O}} b_{\mathcal{O}}^{\mathcal{L}} M_{2}^{\mathcal{O},c.t.}(\pmb{k}_{2},\pmb{k}_{3}) P_{L}(k_{2}) P_{L}(k_{3}) + 2 \, \text{perm} \\ &+ 2\sum_{\mathcal{O}} b_{\mathcal{O}}^{\mathcal{L}} M_{1}^{\mathcal{O},c.t.}(\pmb{k}_{1}) F_{2}(\pmb{k}_{2},\pmb{k}_{3}) P_{L}(k_{2}) P_{L}(k_{3}) + 2 \, \text{perm} \end{split}$$

# Galaxy correlation functions



# Relativistic correction to the bispectrum is as large as the Newtonian result in the squeeze limit.

Also in this limit it is degenerated with the primordial non-Gaussianity signal of the local type  $f_{NL} \sim \mathcal{O}(1)$ .

Galaxy bispectrum is not gauge-independent. Still missing propagation effects.





Gobierno de Chile

# References



Rafael Bravo, Sander Mooij, Gonzalo A. Palma, and Bastian Pradenas. Vanishing of local non-Gaussianity in canonical single field inflation. *JCAP*, 05:025, 2018.



Paolo Creminelli, Guido D'Amico, Marcello Musso, and Jorge Norena. The (not so) squeezed limit of the primordial 3-point function. *JCAP*, 11:038, 2011.



Paolo Creminelli, Jorge Norena, Marko Simonovic, and Filippo Vernizzi. Single-Field Consistency Relations of Large Scale Structure. JCAP, 12:025, 2013.



Single field consistency relation for the 3-point function. *JCAP*, 10:006, 2004.



Roland de Putter, Olivier Doré, and Daniel Green.

Is There Scale-Dependent Bias in Single-Field Inflation? *JCAP*, 10:024, 2015.



Juan Martin Maldacena.

Non-Gaussian features of primordial fluctuations in single field inflationary models. *JHEP*, 05:013, 2003.



Jaiyul Yoo.

Proper-time hypersurface of nonrelativistic matter flows: Galaxy bias in general relativity. *Phys. Rev. D*, 90(12):123507, 2014.