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Inflation, Initial conditions

Inflation provides a mechanism to generate primordial perturbations which
are the seed to structure formation.

Single field inflation? Multi-field inflation? Exotic
Inflation?

Initial conditions: Gaussian, adiabatic

and almost scale invariant. Predict large non-Gaussianity.



Consistency relations

One way to test the field content during inflation in a model independent way is
through the consistency relations.
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@ Inflationary three point function does not have terms diverging like ¢—3
Maldacena (2002), Creminelli.et.al (2004)

@ Valid for single field models. Bravo.ct.al. (2017)
2

Diverging terms like ¢~~ are also absent. Creminelli.et.al.(2011)

@ The consistency relation for the large scale structure is a continuation of the single
field consistency relation. Creminelli.et.al (2013)
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We are in the era of precision cosmology.

Square Kilometre Array
https://www.skatelescope.org/

The Large Synoptic Survey
Telescope
https://www.lsst.org/lsst

Wide Field Infrared Survey Telescope
https://wfirst.gsfc.nasa.gov/index.html

Euclid http://sci.esa.int/euclid/



Dark matter perturbations

Dark matter is considered as a barotropic irrotational perfect fluid

Tuw = p(1+6) upuy

Perturbed FLRW metric

ds® = — (14 26) dt* + 2widtdz’ + a(t)® [(1 — 2¢) 65 + 7is] dz*da’

wi = Oiw + w; =—> dw; = 0, Yii = ai’Yij =0
o Weak field approximation:
H® _ ) 3/2 - 2
bt (Gr) 20O <1, winOER), iy~ OE)
e Gravitational field and velocity are small at small scales
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Dark matter perturbations

Comoving gauge

@ Proper time coincides with time coordinate along the fluid.

u' = diw(1 + 2¢) + w; + O(€°)

e Comoving (synchronous) observer with the fluid.

Yoo.et.al. (2009)




Fluid Equations

Continuity equation FEuler equation
5+0=—0; (6ui> + Ss [1/), 0, ui] 6+ 2HO + %H25 =0; (uiajui) + Sp [d), 0, u’]

Mass conservation Momentum conservation

Einstein equations

V2 = SH25+ Sy, 8,0)  VPwi = Su[t,4,6]

@ Separation between Newtonian result and relativistic (corrections suppressed by
H? )

€= S3):

0 =06n + Or, ui:uﬁv—i—(uﬁ%—l—u%), 0 = O’ J




Matter perturbation dynamics

@ Evolution equation for matter perturbations.
(1, k) + 2H5(0, k) — S H25(6, k) = S(t, ), 6, u']
@ Solving with standard perturbation theory, § < 1 and 6 < 1

The solution to fluid equations is an expansion in powers of the linear density

perturbation

8t k) = Z a™(t) / @2m)36p (k — k1...n) [Fn (1, -+ k)
n=1 k1 kn

+a? () H? () F (1, -+ kn)] 8¢ (k1) -+ 8¢ (kn)

@ During matter domination H? Na%




Initial conditions

@ Initial conditions are taken to match the full GR calculation to leading order.
Boubekeur.et.al (2008)

@ Initial conditions need to be fixed up to second order.

@ Higher order initial conditions are subdominant with respect to the source.

2 2
R _ (_5kitks | 5 ki ko
FftGnoke) = (35857 + 34

Has the same behavior as:

Primordial non-Gaussianity of the local type

3ki + k3

Vo = VG + fNLVE => PNV (ki ko) = —= 222




Correlation functions for matter perturbations

Power spectrum up to one loop

(6(k1)d(k2)) = (2m)?6p (k12) P (k1)

P(k) = P11(k) + Paa(k) 4+ Pis(k) Protooy
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Bispectrum up to one loop
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k1 = 0.1h/Mpc




Galaxy Bias

@ Galaxy formation is a local processes.

@ Expansion in terms of second derivatives of
the gravitational potential V2t) ~ §.

@ Galaxies moves with dark matter fluid
I

SO Neglect bias velocity.

ansion = Adiabatic initial conditions

Building blocks in terms of the extrinsic curvature of the constant-time
hypersurfaces, and the matter density contrast.
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Galaxy bias evolution

Conserved number of galazies

8g +0 = —0; (8qu?) + S5, [, 89, u?] J

At first order:

b*
B(n.) = b0 — o = ady 1+ %)

Eulerian Galaxy bias up to fourth order in perturbations

8y(k,a) = 6(k,a) + Y _a" / Sp(k— ki) > BEME (k1 kn, a)Se(kn) - - 8o (kn)
n=1 k1-

ke )

ME (k,n) = M7 (k) + a® H2MS R (k)




Renormalization of the bias operators

The bias solution 64 = 6 + O generates correlations functions which have divergences at

large scales coming from the composed operators O.

Renormalization condition

tmg o { (Oul 85y -+ 052) ) = ([OK] 8 552

tree

Assassi.et.al (2014)

Renormalization for the operator proportional to b3

b: 1 1
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The comoving physical cutoff scale is modified by the presence of the long-wavelength
perturbation o(Apny) = (1 = %6[) . de Putter.et.al (2015)




Renormalization for the evolved bias expansion

Counter-terms for the evolved bias solution are obtained by evolving renormalized

operators and subtracting extra cut-off dependence due to non-linear evolution.

(Olk,a)) =0 (Ok, a)dr(=k)) (O, )64 (a1)8¢ (a2)) J

O,c.t
O,c. O,c.t 2
MO (k, a) MO (k, a) My (K, a)

Counter-terms contribute up to tree level to the galaxy correlation functions.
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Galaxy correlation functions
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Conclusions

Relativistic correction to the bispectrum is as large as the Newtonian
result in the squeeze limit.

Also in this limit it is degenerated with the primordial non-Gaussianity
signal of the local type fyr ~ O(1).

Galaxy bispectrum is not gauge-independent. Still missing propagation
effects.
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