

CoCo 2o2o: Cosmology in Colombia

23-25 September 2020

America/Bogota timezone

Constraints on the speed of gravitational waves at high z

Alexander Bonilla Rivera

PhD candidate in physics, Departamento de Física, ICE-UFJF.

Advisor

Everton M. Carvalho de Abreu

Universidade Federal Rural do Rio de Janeiro, 23890-971, Serop´edica, RJ, Brazil.

Collaborators in this work

Rafael C. Nunes and José C. N. de Araujo

Divisão de Astrofísica, INPE, Avenida dos Astronautas 1758, São José dos Campos, 12227-010, SP, Brazil.

Rocco D'Agostino

Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Napoli, Via Cinthia 9, I-80126 Napoli, Italy.

- 1. Introduction and Motivation
- 2. Theoretical framework
 - 2.1. Gravitational waves in modified gravity
 - 2.2. Methodology and results
- 3. Summary and conclusions

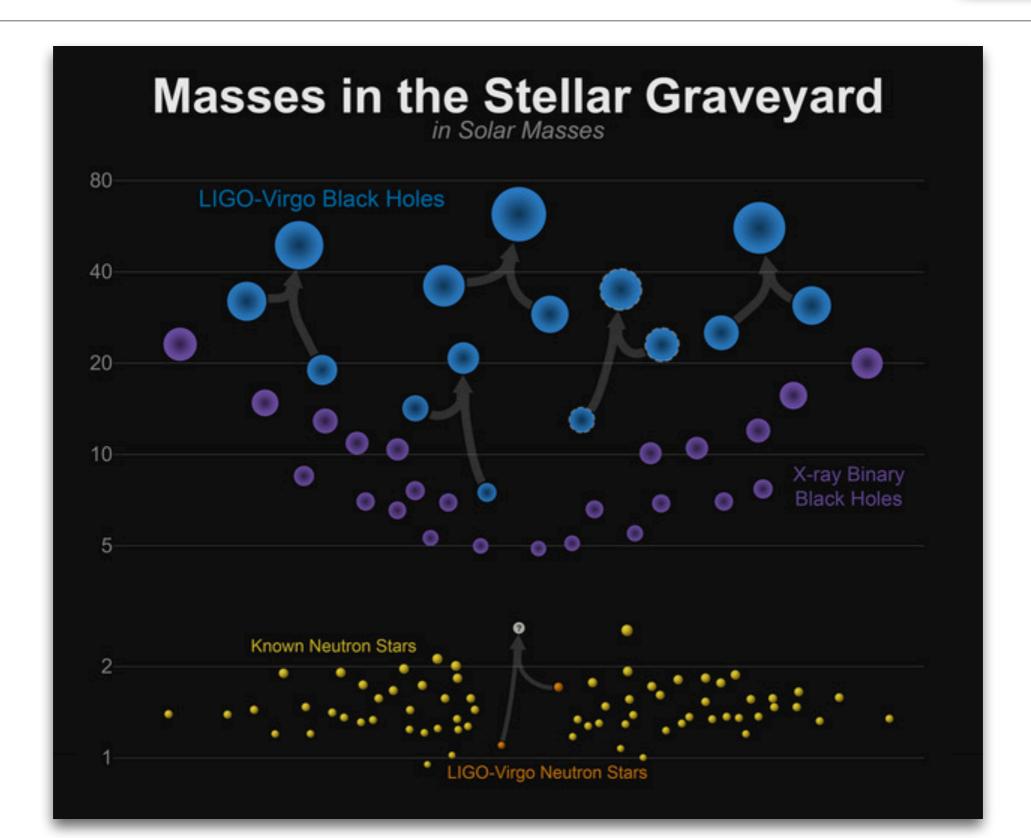
- 1. Introduction and Motivation
- 2. Theoretical framework
 - 2.1. Gravitational waves in modified gravity
 - 2.2. Methodology and results
- 3. Summary and conclusions

Introduction and Motivation

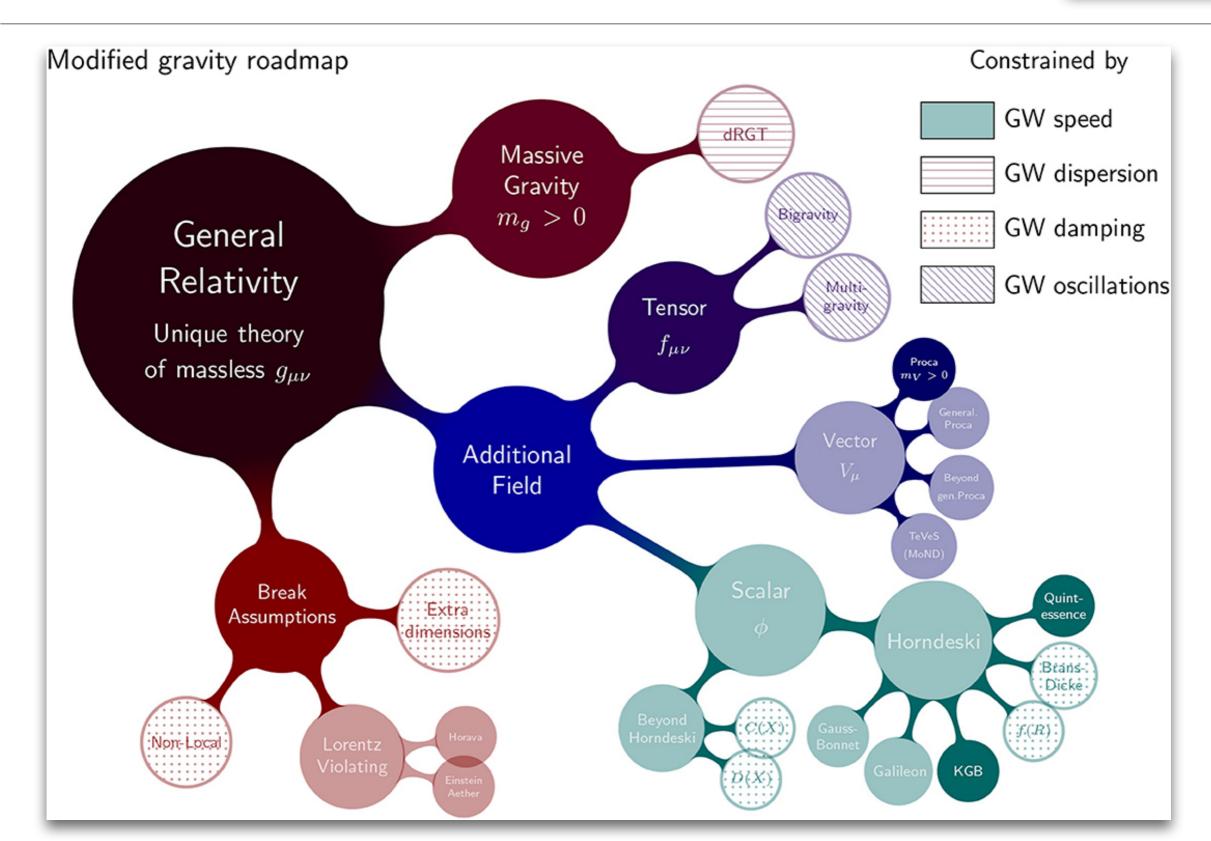
- 1. Astronomical information from gravitational wave (GW) observations will open a new and wide spectrum of possibilities to investigate fundamental physics, which might shed light to clarify open questions in modern cosmology, especially regarding the dark sector of the Universe.
- 2. At present, one Binary Neutron Star (BNS) merger event has been detected, the GW170817 event, accompanied by its electromagnetic counterpart, the GRB 170817A event, located at 40 Mpc ($z \approx 0.01$).
- 3. This event was also the first standard siren (SS) observation, the GWs analog of astronomical standard candles, and opened the window for the multi-messenger GW astronomy.
- 4. Although the GW170817 event is located at very low z, preliminary cosmological information and consequences of this observation are important to the understanding of our Universe locally.
- 5. A very important consequence of this BNS signals was the strong bound placed on the GW speed, $|cT/c 1| \le 10^{-16}$, where cT and c are the propagation speed of the GWs and light, respectively.

- 1. Introduction and Motivation
- 2. Theoretical framework
 - 2.1. Gravitational waves in modified gravity
 - 2.2. Methodology and results
- 3. Summary and conclusions

GravWaves in modified gravity



GravWaves in modified gravity



Horndeski action reads

$$S = \int d^4x \sqrt{-g} \left[\sum_{i=2}^5 M_P^2 \mathcal{L}_i + \mathcal{L}_m \right], \tag{1}$$

where g is the determinant of the metric tensor, and

$$\mathcal{L}_2 = G_2(\phi, X),\tag{2}$$

$$\mathcal{L}_3 = -G_3(\phi, X) \square \phi, \tag{3}$$

$$\mathcal{L}_4 = -G_4(\phi, X)R + G_{4,X}[(\Box \phi)^2 - \phi_{;\mu\nu}\phi^{;\mu\nu}], \qquad (4)$$

$$\mathcal{L}_5 = -G_5(\phi, X)G_{\mu\nu}\phi^{;\mu\nu} - \frac{1}{6}G_{5,X}[(\Box\phi)^3$$
 (5)

$$+2\phi_{;\mu\nu}\phi^{;\mu\sigma}\phi^{;\nu}_{;\sigma}-3\phi_{;\mu\nu}\phi^{;\mu\nu}\Box\phi]. \tag{6}$$

Here, G_i (*i* runs over 2, 3, 4, 5) are functions of a scalar field ϕ and the kinetic term $X \equiv -1/2\nabla^{\nu}\phi\nabla_{\nu}\phi$, and $G_{i,X} \equiv \partial G_i/\partial X$. For $G_2 = \Lambda$, $G_4 = M_P^2/2$ and $G_3 = G_5 = 0$, we recover GR with a cosmological constant. For

The most general tensor metric perturbation evolution, under the FRW metric, can be written as [39]

$$h_A'' + (2 + \nu)\mathcal{H}h_A' + (c_T^2 k^2 + \mu^2)h_A = \Pi_A , \qquad (1)$$

where h_A is the metric tensor perturbation, being $A = \{+, \times\}$ the label of the two polarization states, and \mathcal{H} is the Hubble rate in conformal time. The quantities ν , c_T and μ represent the running of the effective Planck mass, the GW propagation speed and the effective graviton mass, respectively. The function Π_A denotes extra sources generating GWs, which we assume to be null.

$$\nu = \alpha_M$$

GravWaves in modified gravity

luminosity distance for non-trivial function ν and c_T satisfies the equation 1

$$d_L^{GW}(z) = \sqrt{\frac{c_T(z)}{c_T(0)}} \exp\left[\frac{1}{2} \int_0^z \frac{dz'}{1+z'} \nu(z')\right] \times (1+z) \int_0^z \frac{c_T(z')dz'}{H(z')},$$
 (2)

where, for $\nu = 0$ and $c_T = 1$, we recover the general relativity case (Λ CDM cosmology), that is, $d_L^{GW}(z) = d_L^{EM}(z)$, where d_L^{EM} is the standard luminosity distance for an electromagnetic signal. Generalizations and inter-

GravWaves in modified gravity

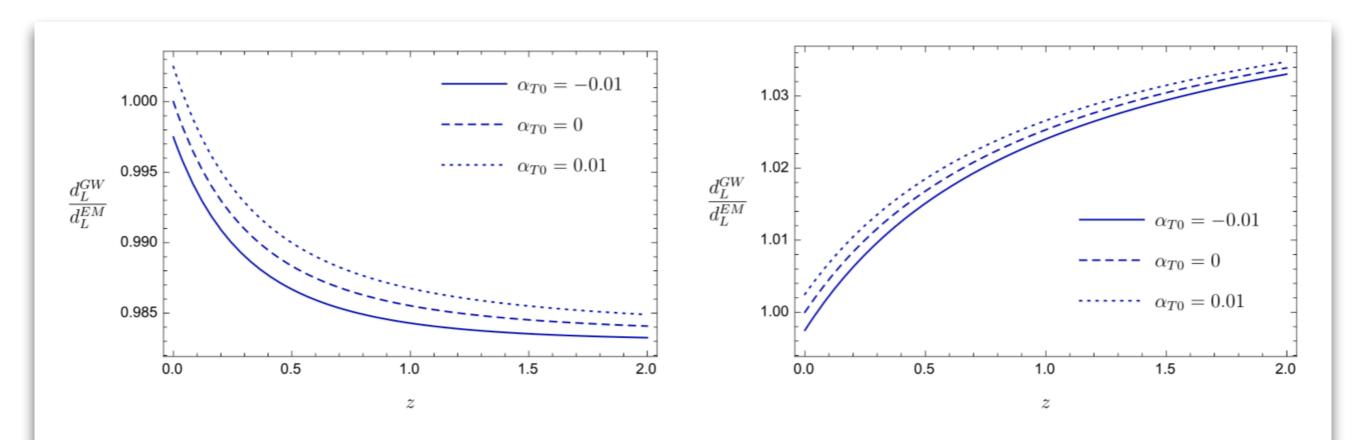


FIG. 1. Corrections on the effective GW luminosity distance (cf. Eq. (2)) as a function of the redshift for different values of the tensor speed excess α_{T0} with fixed values of α_{M0} . Left panel: $\alpha_{M0} = -0.1$, $n_1 = 3$, $n_2 = 1$. Right panel: $\alpha_{M0} = 0.1$, $n_1 = 1$, $n_2 = 1$. The limit $d_L^{EM}(z)/d_L^{EM} = 1$ represents general relativity.

- 1. Introduction and Motivation
- 2. Theoretical framework
 - 2.1. Gravitational waves in modified gravity
 - 2.2. Methodology and results
- 3. Summary and conclusions

Introduction and Motivation

Laser Interferometer
Gravitational-Wave Observatory
Supported by the National Science Foundation
Operated by Caltech and MIT

$$c_T/c = 1 \text{ for } z < 0.1$$

Gravitational Wave Speed

$$c_T^2(z) = 1 + \alpha_T(z).$$

 α_T (tensor speed excess)

$$\alpha_T = \alpha_{T0} a^{n_2}$$

Running of the Planck mass

$$\alpha_M = \frac{1}{HM_*^2} \frac{dM_*^2}{dt},$$

M* is the effective Planck mass

$$\alpha_M = \alpha_{M0} a^{n_1}$$

GW strain signal

Waveform emitted by the binary system

GW strain signal $h(t) = A(t) \cos[\Phi(t)]$,

Fourier transform

GW inspiral amplitude

$$\tilde{h}(f) = Q\mathcal{A}f^{-7/6}e^{i\Phi(f)}, \quad \mathcal{A} = \sqrt{\frac{5}{96}} \frac{\mathcal{M}_c^{5/6}}{\pi^{2/3}d_L^{GW}} \left(\sum_{i=0}^6 A_i(\pi f)^{i/3}\right)$$

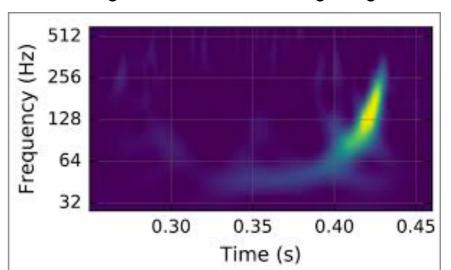
$$Q^{2} = F_{+}^{2}(1 + \cos^{2}(\iota))^{2} + 2F_{\times}^{2}\cos^{2}(\iota)$$

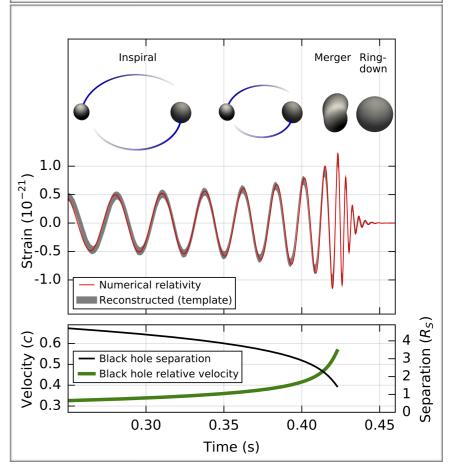
ι is the inclination angle of the binary orbital angular momentum with respect to the line of sight

F_{+}^{2} , F_{\times}^{2} are the two antenna pattern functions

$$\Phi(f) = 2\pi f t_c - \phi_c - \frac{\pi}{4} + \frac{3}{128\eta v^5} \left[1 + \sum_{i=2}^7 \alpha_i v^i \right]$$

inspiral phase of the binary system





GW strain signal

Simulation: 1000 data points

GW strain signal $h(t) = A(t) \cos[\Phi(t)]$,

Fourier transform

GW inspiral amplitude

$$\tilde{h}(f) = Q\mathcal{A}f^{-7/6}e^{i\Phi(f)}, \quad \mathcal{A} = \sqrt{\frac{5}{96}} \frac{\mathcal{M}_c^{5/6}}{\pi^{2/3}d_L^{GW}} \left(\sum_{i=0}^6 A_i(\pi f)^{i/3}\right)$$

$$Q^{2} = F_{+}^{2}(1 + \cos^{2}(\iota))^{2} + 2F_{\times}^{2}\cos^{2}(\iota)$$

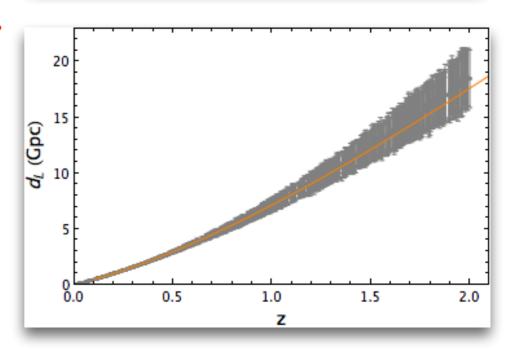
1200 GW150914 GW151226 GW170104 GW170608 GW170817 GW17081 GW170817 GW17081 GW17081

ι is the inclination angle of the binary orbital angular momentum with respect to the line of sight

$F+^2$, $F\times^2$ are the two antenna pattern functions

$$\Phi(f) = 2\pi f t_c - \phi_c - \frac{\pi}{4} + \frac{3}{128\eta v^5} \left[1 + \sum_{i=2}^7 \alpha_i v^i \right]$$

inspiral phase of the binary system



$$F_{ij} = \sum_{n} \frac{1}{\sigma_{\text{ins}}^2 + \sigma_{\text{lens}}^2(z_n) + \sigma_v^2(z_n)} \frac{\partial d_L(z_n)}{\partial \theta_i} \frac{\partial d_L(z_n)}{\partial \theta_j},$$
(6)

where the sum n runs over all standard sirens mock events. The derivatives are performed with respect to the cosmological parameters $\theta_i = \{H_0, \Omega_{m0}, \alpha_{M0}, \alpha_{T0}, n_1, n_2\}$ evaluated at their fiducial input values. In our analysis, we used $\theta_i = \{67.4, 0.30, 0.0, 0.0, 0.0, 3.0 (1.0), 1.0\}$ as fiducial

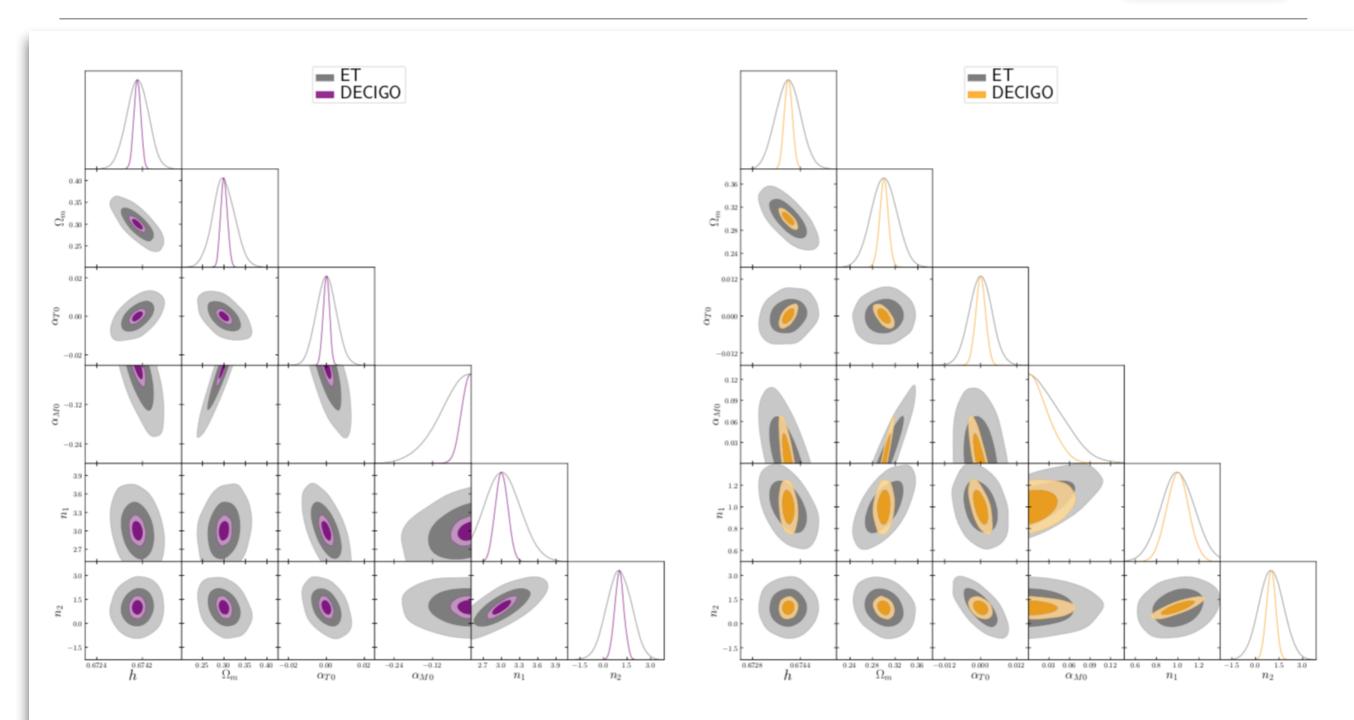


FIG. 3. One-dimensional marginalized distribution, and 68% and 95% C.L. regions for the parameters of the theoretical models under study, from the ET and DECIGO experiments. On the left panel and right panel, the stability conditions $\alpha_{M0} < 0$ and $\alpha_{M0} > 0$ are considered, respectively.

IMPLICATIONS ON MODIFIED GRAVITY PHENOMENOLOGY

Parameter	$\sigma({ m ET})$	$\sigma({ m DECIGO})$
$lpha_{T0}$	0.0099	0.0033
$lpha_{M0}$	> -0.17	> -0.055
n_1	0.60	0.22
n_2	1.50	0.59

TABLE I. Forecast constraints from the ET and DECIGO experiments, under the stability condition $\alpha_{M0} < 0$. The notations $\sigma(\text{ET})$ and $\sigma(\text{DECIGO})$ represent the 95% C.L. estimation on the fiducial input values from ET and DECIGO, respectively.

Parameter	$\sigma({ m ET})$	$\sigma({ m DECIGO})$
$lpha_{T0}$	0.0077	0.0032
$lpha_{M0}$	< 0.091	< 0.052
n_1	0.31	0.21
n_2	1.50	0.59

TABLE II. Forecast constraints from the ET and DECIGO experiments, under the stability condition $\alpha_{M0} > 0$. The notation is the same as in Table II.

Within the Horndeski theories of gravity

$$M_*^2 \alpha_T = 2X(2G_{4X} - 2G_{5\phi} - (\ddot{\phi} - \dot{\phi})G_{5X})$$

scalar field couples to the Einstein tensor

$$\xi \phi G_{\mu\nu} \nabla^{\mu} \nabla^{\nu} \phi$$

The parameter ξ represents the coupling constant of the theory and quantifies possible **anomalies** on the GWs speed propagation.

$$M_*^2 \alpha_T = 2\xi \dot{\phi}^2.$$
 $G_4 = M_{pl}^2/2 \text{ and } G_5 = \xi \phi.$
$$c_T^2 = 1 + \frac{2\dot{\phi}^2}{M_*^2} \xi.$$

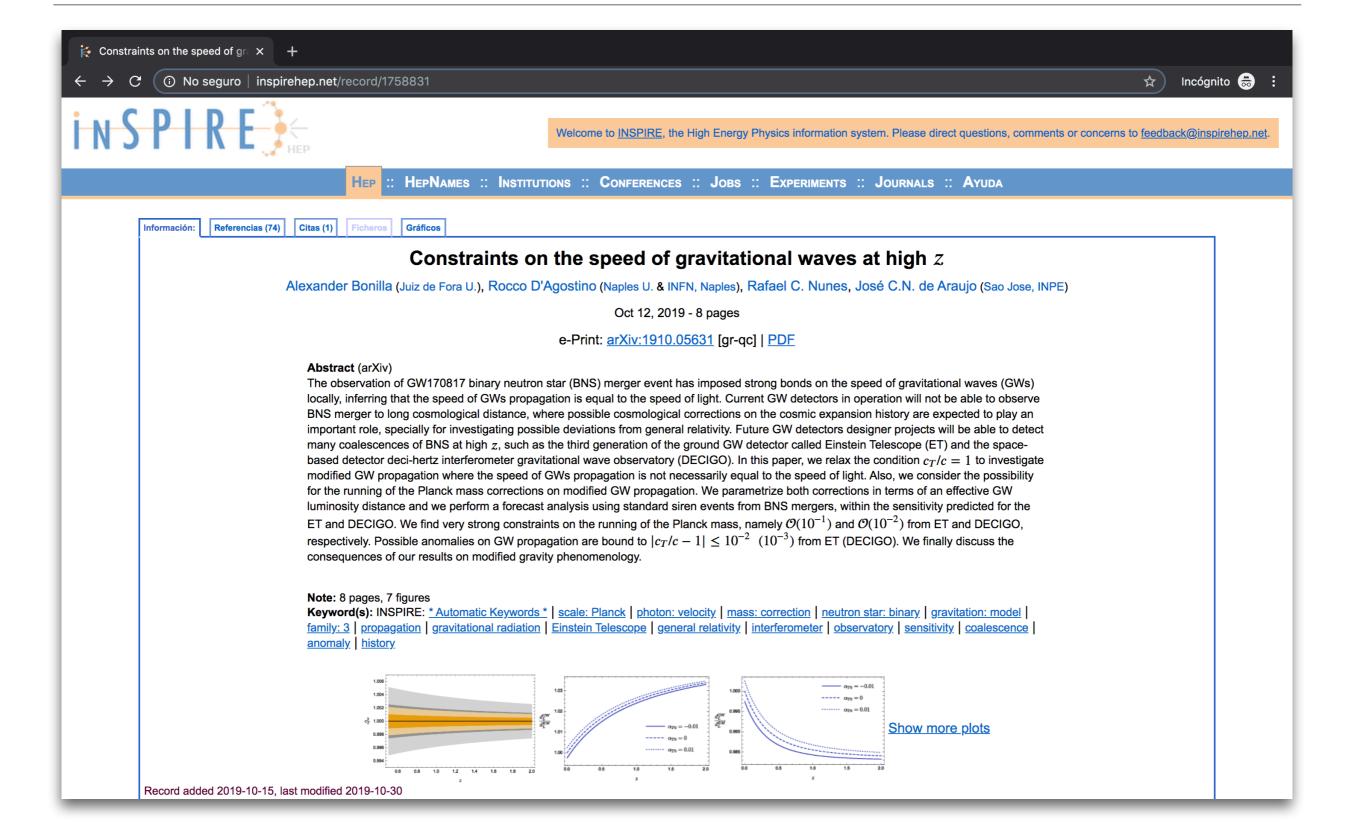
At intermediate z, it is reasonable to assume $\phi'/M* \approx 1$, so that we estimate $-0.005 < \xi < 0.006$ ($-0.002 < \xi < 0.002$) at the 95% C.L. from ET (DECIGO), in the case $\alpha M0 < 0$.

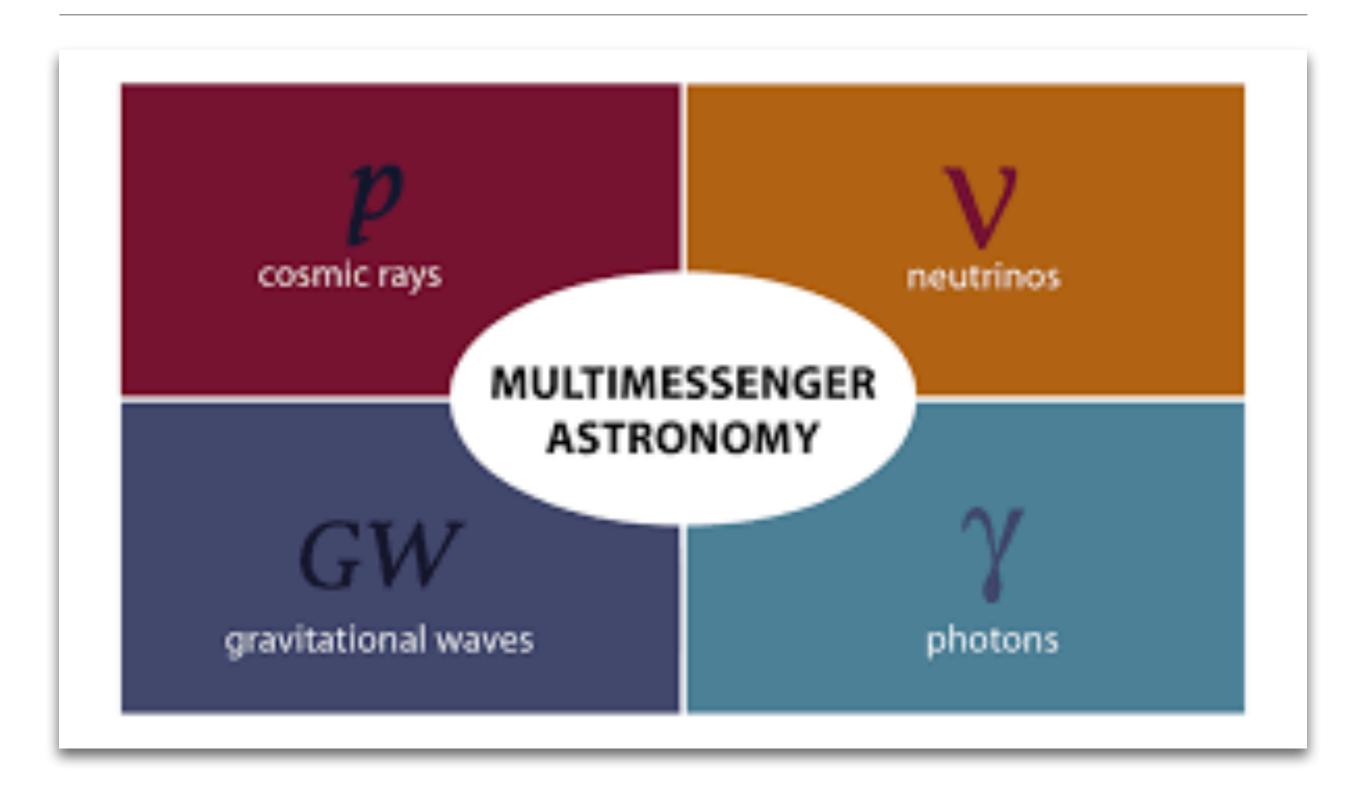
- 1. Introduction and Motivation
- 2. Theoretical framework
 - 2.1. Gravitational waves in modified gravity
 - 2.2. Methodology and results
- 3. Summary and conclusions

Summary and conclusions

- 1. Due to extra degrees of freedom of gravitational origin, modified gravity models predict physical properties beyond the standard features of general relativity.
- 2. Motivated by this aspect, we thus performed a forecast analysis using 1000 standard siren events from BNS mergers, within the sensitivity predicted for ET and DECIGO up to z = 2 (~ 15539 Mpc).
- 3. We found $|cT/c 1| \le 10^{-2}$ (10^-3) from ET (DECIGO), which leaves room for small possible corrections predicted by alternative theories, compared to the only information from GW170817 event at very low z.
- 4. Nevertheless, the main findings of this work represent the first observational constraints obtained by using information from SS mock data from future detector design.
- 5. In this respect, our results open a new window for possible tests on c_i(z) in the future.

Bibliography





Introduction and Motivation

The Effective Planck Mass and the Scale of Inflation

$$\alpha_M = \frac{1}{HM_*^2} \frac{dM_*^2}{dt}$$
, Running of the Planck mass

$$V_*^{1/4} = M_* \left(\frac{3\pi^2 \mathcal{A} r_*}{2 \cdot 10^{10}} \right)^{1/4}$$

 $V_*^{1/4} = M_* \left(\frac{3\pi^2 \mathcal{A} r_*}{2 \cdot 10^{10}}\right)^{1/4}$ · N central charge (N ϕ scalars fermions and NV vector bosons). • N central charge (N_{φ} scalars, N_{ψ} Dirac

 $M_* \sim \frac{M_{\rm pl}}{\sqrt{N}}$

 $Mpl = 2.435 \times 10^{18} GeV$ reduced Planck mass.

$$r_* := \frac{\mathcal{P}_{\gamma}}{\mathcal{P}_{\mathcal{R}}} = 16\epsilon_*.$$

• M* is the effective Planck mass.

$$r_* := \frac{\mathcal{P}_{\gamma}}{\mathcal{P}_{\mathcal{R}}} = 16\epsilon_*.$$

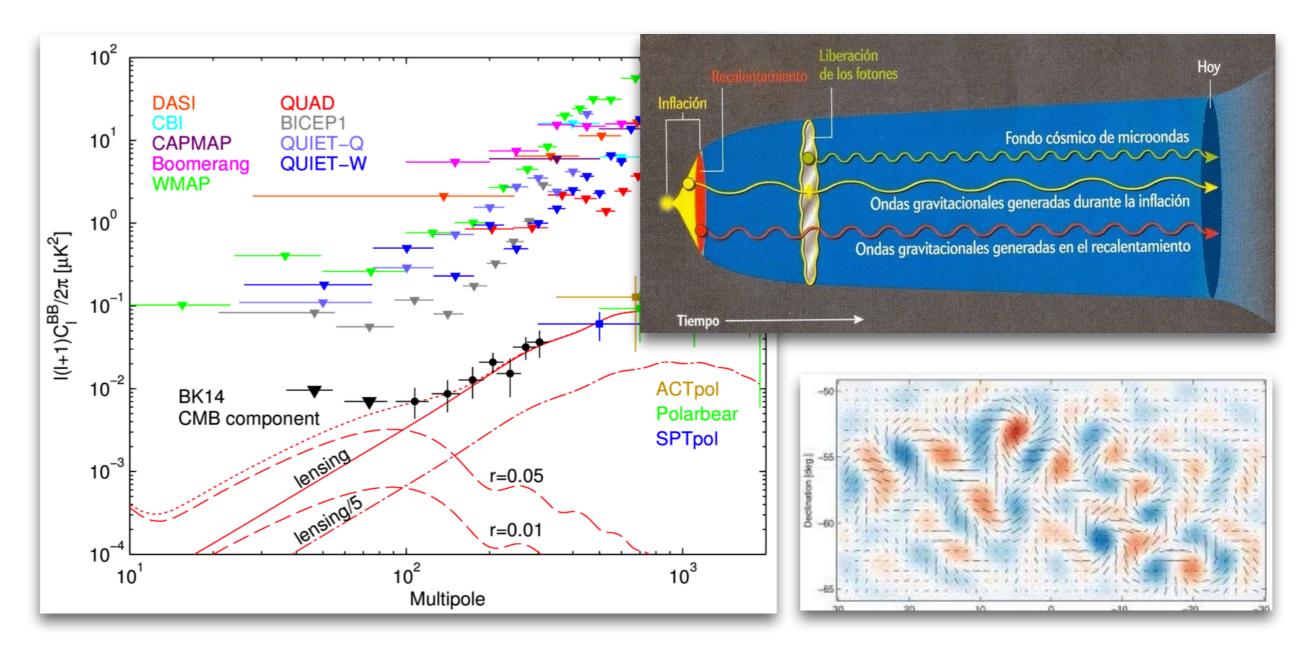
H* being the Hubble factor during inflation.

$$\epsilon_* := -\dot{H}_*/H_*^2$$

r* tensor to scalar ratio.

• A \sim 22.15 relates to the amplitude of the late time CMB anisotropies.

Introduction and Motivation



Any collaboration will be welcome...!

