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L.-algebras

Remembering a Lie algebras, vector space with a
product

[T, T/], T¥) + [[T%, T%], T/] + [T/, T"], T'] = 0

renaming T — a;and [,] — I

lQ(lz(al’, aj),ak) + lz(lz(ak,a,'),ﬂj) + lz(lz(aj, ak),a,j) =0

Adding a derivative /1(a;) we have a differential Lie
Algebra DL-algebra

If the vector space is graded we have a differential
graded Lie algebra DGL-algebra

Now the ;s are the fields of the theory

The grading for the space comes from the ghost
number (BRST) and the products...
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Off-shell BRST, antibracket formalism,...

gauge parameters — ghost fields (field content &)
Introduce anti-fields doubling the field content:

(@%) — (4, @)

Antibracket of two general functionals F|®, ®*| and
G[D, D*| by

%
9 9 9 9
(F,G) = F(aq)A oD% 9D aq>A>G

We want a particular functional: the action
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BV formalism

The classical master action S|®, ©*| must satisfy:
1 Classical action for the fields

S[CD/CD } EE— Sclass

2 Classical master equation

(5,5) =0

BV nilpotent transformations

Spy®@?t = —(S5,94) = aa(i,)sj‘/
Spy®@y = —(S,®%) = — 25
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Taking the field content as
(A, ,c) — (A, 9, c, A%, 9*,c¥)

From the master action S[A, ¢, c, A", ", c*| we have
the BV transformations

dpve’ = —5h(c,0)",

Spv AL =11(0)f + (A e)f + SI5(A, A 0)f + S5 (W +,9 + §,0)5 + F3(c,c AT,
gy’ =h(,0) +13(A,,0) +13(c.c 9,

opyipi = L (P, 0)i +13(A, §,0); +13(c,c, P7);,

Sy A" = —11(A)f — 31a(A A = F Y+ +§)f — (e, A"+

opv; = —L(@+¢);i —b(AP); — b )i+,

Spvy™ = —h(p+§) — (A, ) — L )+,

Spvc™ = (AY)" + 1 (A A" —L(e, )" +h(p+§, " +¢7) + -

and from the BV transformations the L..-algebra
products
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BV formalism and L.-algebras

Back to the graded vector field with elements x;

The equivalent of the Jacobi identity for an
Le.-algebra

n

Y (=0 x(oxn, )i (Y1), -0 Xa(i)s Xo(is1)s - - s X)) = O

i=1 eSS,

Nilpotency of the BV transformations lead exactly to
a L.-algebra!

Calling the the physical fields #;’s with degree 1, we
can recover the classical action (Maurer-Cartan)

Smcla] = Z (nil)!<a,ln(a,...,a)>

n>1
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L.-algebras and scattering amplitudes

Isomorphisms for L..-algebra are called
quasi-isomorphisms
There is a particular quasi-isomorphism:

fiH(L) — L

from the cohomology (/1 (2) = 0) to the algebra

The elements in the cohomology are plane waves and
due to to f:

(g )~ (™ )

Taking an infinite sum of plane waves, it give us the
perturbiner expansion.
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L.-algebras and scattering amplitudes

The construction of f is recursive and gives the
Berends-Giele currents. e. g.

| 1
A=Y AT s AF = Y (AL AN
i>1 n>1 1

f endows the cohomology with a L, structure (a’, /)

Since we have a L..-algebra in H*(L) we have an
action

SuclA'T=)

= (n+1)!

1

(Al I (A, ..., A))

this action generates all the tree-level amplitudes
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Examples
Yang-Mills

L M ikp-xap M iki-xTa Wik xmagpay
A=) ), AT = ) ATNITY 4 ) Ape T THTY
n>11eWy i>1 ij>1

where
N 1 1 v 1 ahv
M=o T {(kK.A,)A§<+Ah,f§<‘ — (ky - Ag) A —AKUI;L}
I=JK

and n L L L }I ;

T = KA — kAL = T (Af A — AfAT)

I=]K

Amplitudes

SmclAl =) = Z Y. O(kir)siA; - Apte(T)

n>3 " i>11eW, ,
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QCD
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Amplitudes
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Z Z {fﬂbc((kQ A%)(Ab . ‘;) 4+ AL A“ ?yvc)
151 PEOW,
P=QUR

F QA (T) ¥ — ¥y (Ta) ¥ — ¥l (To) ¥}




Conclusions

e Deeper knowledge about the structure of scattering
amplitudes (relations, identities)



Conclusions

e Deeper knowledge about the structure of scattering
amplitudes (relations, identities)

e Dyck localisation for flavours from single flavoured
action



Conclusions

e Deeper knowledge about the structure of scattering
amplitudes (relations, identities)

e Dyck localisation for flavours from single flavoured
action

e Closed expressions for dressed propagators in a
background



Conclusions

e Deeper knowledge about the structure of scattering
amplitudes (relations, identities)

e Dyck localisation for flavours from single flavoured
action

e Closed expressions for dressed propagators in a
background

e Application to colour-kinematics



Conclusions

e Deeper knowledge about the structure of scattering
amplitudes (relations, identities)

e Dyck localisation for flavours from single flavoured
action

e Closed expressions for dressed propagators in a
background

e Application to colour-kinematics
e Loop case (algebraic and mixed approach)



Conclusions

e Deeper knowledge about the structure of scattering
amplitudes (relations, identities)

e Dyck localisation for flavours from single flavoured
action

e Closed expressions for dressed propagators in a
background

e Application to colour-kinematics
e Loop case (algebraic and mixed approach)
e Associahedron, Amplituhedron,...



Thanks for your attention!
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