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L∞-algebras
Remembering a Lie algebras, vector space with a
product

[[Ti, T j], Tk] + [[Tk, Ti], T j] + [[T j, Tk], Ti] = 0

renaming Ti → ai and [, ]→ l2
l2(l2(ai, aj), ak) + l2(l2(ak, ai), aj) + l2(l2(aj, ak), ai) = 0

Adding a derivative l1(ai) we have a differential Lie
Algebra DL-algebra
If the vector space is graded we have a differential
graded Lie algebra DGL-algebra
Now the ai’s are the fields of the theory
The grading for the space comes from the ghost
number (BRST) and the products...



L∞-algebras
Remembering a Lie algebras, vector space with a
product

[[Ti, T j], Tk] + [[Tk, Ti], T j] + [[T j, Tk], Ti] = 0

renaming Ti → ai and [, ]→ l2
l2(l2(ai, aj), ak) + l2(l2(ak, ai), aj) + l2(l2(aj, ak), ai) = 0

Adding a derivative l1(ai) we have a differential Lie
Algebra DL-algebra
If the vector space is graded we have a differential
graded Lie algebra DGL-algebra
Now the ai’s are the fields of the theory
The grading for the space comes from the ghost
number (BRST) and the products...



L∞-algebras
Remembering a Lie algebras, vector space with a
product

[[Ti, T j], Tk] + [[Tk, Ti], T j] + [[T j, Tk], Ti] = 0

renaming Ti → ai and [, ]→ l2
l2(l2(ai, aj), ak) + l2(l2(ak, ai), aj) + l2(l2(aj, ak), ai) = 0

Adding a derivative l1(ai) we have a differential Lie
Algebra DL-algebra

If the vector space is graded we have a differential
graded Lie algebra DGL-algebra
Now the ai’s are the fields of the theory
The grading for the space comes from the ghost
number (BRST) and the products...



L∞-algebras
Remembering a Lie algebras, vector space with a
product

[[Ti, T j], Tk] + [[Tk, Ti], T j] + [[T j, Tk], Ti] = 0

renaming Ti → ai and [, ]→ l2
l2(l2(ai, aj), ak) + l2(l2(ak, ai), aj) + l2(l2(aj, ak), ai) = 0

Adding a derivative l1(ai) we have a differential Lie
Algebra DL-algebra
If the vector space is graded we have a differential
graded Lie algebra DGL-algebra

Now the ai’s are the fields of the theory
The grading for the space comes from the ghost
number (BRST) and the products...



L∞-algebras
Remembering a Lie algebras, vector space with a
product

[[Ti, T j], Tk] + [[Tk, Ti], T j] + [[T j, Tk], Ti] = 0

renaming Ti → ai and [, ]→ l2
l2(l2(ai, aj), ak) + l2(l2(ak, ai), aj) + l2(l2(aj, ak), ai) = 0

Adding a derivative l1(ai) we have a differential Lie
Algebra DL-algebra
If the vector space is graded we have a differential
graded Lie algebra DGL-algebra
Now the ai’s are the fields of the theory

The grading for the space comes from the ghost
number (BRST) and the products...



L∞-algebras
Remembering a Lie algebras, vector space with a
product

[[Ti, T j], Tk] + [[Tk, Ti], T j] + [[T j, Tk], Ti] = 0

renaming Ti → ai and [, ]→ l2
l2(l2(ai, aj), ak) + l2(l2(ak, ai), aj) + l2(l2(aj, ak), ai) = 0

Adding a derivative l1(ai) we have a differential Lie
Algebra DL-algebra
If the vector space is graded we have a differential
graded Lie algebra DGL-algebra
Now the ai’s are the fields of the theory
The grading for the space comes from the ghost
number (BRST) and the products...



BV formalism

Off-shell BRST, antibracket formalism,...

gauge parameters −→ ghost fields (field content ΦA)
Introduce anti-fields doubling the field content:
(ΦA) −→ (ΦA, Φ∗A)
Antibracket of two general functionals F[Φ, Φ∗] and
G[Φ, Φ∗] by

(F, G) = F

( ←−
∂

∂ΦA
∂

∂Φ∗A
−
←−
∂

∂Φ∗A

∂

∂ΦA

)
G

We want a particular functional: the action
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BV formalism
The classical master action S[Φ, Φ∗] must satisfy:

1 Classical action for the fields

S[Φ, Φ∗] Φ∗ = 0−−−−→ Sclass

2 Classical master equation

(S, S) = 0

BV nilpotent transformations

δBVΦA = −(S, ΦA) = ∂rS
∂Φ∗A

,

δBVΦ∗A = −(S, Φ∗A) = −
∂rS

∂ΦA
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BV formalism and L∞-algebras

Taking the field content as
(A, ψ, c) −→ (A, ψ, c, A∗, ψ∗, c∗)

From the master action S[A, ψ, c, A∗, ψ∗, c∗] we have
the BV transformations

δBVca = − 1
2 l2(c, c)a ,

δBV Aa
µ = l1(c)

a
µ + l2(A, c)a

µ + 1
2 l3(A, A, c)a

µ + 1
2 l3(ψ + ψ̄, ψ + ψ̄, c)a

µ + 1
2 l3(c, c, A∗)a

µ ,

δBVψi = l2(ψ, c)i + l3(A, ψ, c)i + l3(c, c, ψ∗)i ,

δBVψ̄i = l2(ψ̄, c)i + l3(A, ψ̄, c)i + l3(c, c, ψ̄∗)i ,

δBV A∗aµ = −l1(A)a
µ − 1

2 l2(A, A)a
µ − 1

2 l2(ψ + ψ̄, ψ + ψ̄)a
µ − l2(c, A∗)a

µ + · · · ,

δBVψ̄∗i = −l1(ψ + ψ̄)i − l2(A, ψ̄)i − l2(c, ψ̄∗)i + · · · ,

δBVψ∗i = −l1(ψ + ψ̄)i − l2(A, ψ)i − l2(c, ψ∗)i + · · · ,

δBVc∗a = l1(A∗)a + l2(A, A∗)a − l2(c, c∗)a + l2(ψ + ψ̄, ψ̄∗ + ψ∗)a + · · · ,

and from the BV transformations the L∞-algebra
products
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BV formalism and L∞-algebras

Back to the graded vector field with elements xi

The equivalent of the Jacobi identity for an
L∞-algebra

n

∑
i=1

(−1)n−i ∑
σ∈Si,n−i

χ(σ; x1, . . . , xn)ln−i+1(li(xσ(1), . . . , xσ(i)), xσ(i+1), . . . , xσ(n)) = 0

Nilpotency of the BV transformations lead exactly to
a L∞-algebra!
Calling the the physical fields ai’s with degree 1, we
can recover the classical action (Maurer-Cartan)

SMC[a] = ∑
n≥1

1
(n + 1)!

〈a, ln(a, . . . , a)〉



BV formalism and L∞-algebras

Back to the graded vector field with elements xi
The equivalent of the Jacobi identity for an
L∞-algebra

n

∑
i=1

(−1)n−i ∑
σ∈Si,n−i

χ(σ; x1, . . . , xn)ln−i+1(li(xσ(1), . . . , xσ(i)), xσ(i+1), . . . , xσ(n)) = 0

Nilpotency of the BV transformations lead exactly to
a L∞-algebra!
Calling the the physical fields ai’s with degree 1, we
can recover the classical action (Maurer-Cartan)

SMC[a] = ∑
n≥1

1
(n + 1)!

〈a, ln(a, . . . , a)〉



BV formalism and L∞-algebras

Back to the graded vector field with elements xi
The equivalent of the Jacobi identity for an
L∞-algebra

n

∑
i=1

(−1)n−i ∑
σ∈Si,n−i

χ(σ; x1, . . . , xn)ln−i+1(li(xσ(1), . . . , xσ(i)), xσ(i+1), . . . , xσ(n)) = 0

Nilpotency of the BV transformations lead exactly to
a L∞-algebra!

Calling the the physical fields ai’s with degree 1, we
can recover the classical action (Maurer-Cartan)

SMC[a] = ∑
n≥1

1
(n + 1)!

〈a, ln(a, . . . , a)〉



BV formalism and L∞-algebras

Back to the graded vector field with elements xi
The equivalent of the Jacobi identity for an
L∞-algebra

n

∑
i=1

(−1)n−i ∑
σ∈Si,n−i

χ(σ; x1, . . . , xn)ln−i+1(li(xσ(1), . . . , xσ(i)), xσ(i+1), . . . , xσ(n)) = 0

Nilpotency of the BV transformations lead exactly to
a L∞-algebra!
Calling the the physical fields ai’s with degree 1, we
can recover the classical action (Maurer-Cartan)

SMC[a] = ∑
n≥1

1
(n + 1)!

〈a, ln(a, . . . , a)〉



L∞-algebras and scattering amplitudes
Isomorphisms for L∞-algebra are called
quasi-isomorphisms

There is a particular quasi-isomorphism:

f : H•(L) −→ L

from the cohomology (l1(a) = 0) to the algebra
The elements in the cohomology are plane waves and
due to to f : {

plane
waves

} {multi−particle
solutions

}
Taking an infinite sum of plane waves, it give us the
perturbiner expansion.
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L∞-algebras and scattering amplitudes

The construction of f is recursive and gives the
Berends-Giele currents. e. g.

A′µ = ∑
i≥1

A
µ
i eiki·xTai −→ Aµ = ∑

n≥1

1
n!

fn(A′, . . . , A′)µ

f endows the cohomology with a L∞ structure (a′, l′k)
Since we have a L∞-algebra in H•(L) we have an
action

S′MC[A
′] = ∑

n≥2

1
(n + 1)!

〈A′, l′n(A′, . . . , A′)〉

this action generates all the tree-level amplitudes



L∞-algebras and scattering amplitudes

The construction of f is recursive and gives the
Berends-Giele currents. e. g.

A′µ = ∑
i≥1

A
µ
i eiki·xTai −→ Aµ = ∑

n≥1

1
n!

fn(A′, . . . , A′)µ

f endows the cohomology with a L∞ structure (a′, l′k)

Since we have a L∞-algebra in H•(L) we have an
action

S′MC[A
′] = ∑

n≥2

1
(n + 1)!

〈A′, l′n(A′, . . . , A′)〉

this action generates all the tree-level amplitudes



L∞-algebras and scattering amplitudes

The construction of f is recursive and gives the
Berends-Giele currents. e. g.

A′µ = ∑
i≥1

A
µ
i eiki·xTai −→ Aµ = ∑

n≥1

1
n!

fn(A′, . . . , A′)µ

f endows the cohomology with a L∞ structure (a′, l′k)
Since we have a L∞-algebra in H•(L) we have an
action

S′MC[A
′] = ∑

n≥2

1
(n + 1)!

〈A′, l′n(A′, . . . , A′)〉

this action generates all the tree-level amplitudes



L∞-algebras and scattering amplitudes

The construction of f is recursive and gives the
Berends-Giele currents. e. g.

A′µ = ∑
i≥1

A
µ
i eiki·xTai −→ Aµ = ∑

n≥1

1
n!

fn(A′, . . . , A′)µ

f endows the cohomology with a L∞ structure (a′, l′k)
Since we have a L∞-algebra in H•(L) we have an
action

S′MC[A
′] = ∑

n≥2

1
(n + 1)!

〈A′, l′n(A′, . . . , A′)〉

this action generates all the tree-level amplitudes



Examples
Yang-Mills

Aµ = ∑
n≥1

∑
I∈Wn

A
µ
I eikI ·xTaI = ∑

i≥1
A

µ
i eiki ·xTai + ∑

i,j≥1
A

µ
ije

ikij ·xTai Taj + · · ·

where

A
µ
I =

1
sI

∑
I=JK

{
(kK ·AJ)A

µ
K +AJνF

µν
K − (k J ·AK)A

µ
J −AKνF

µν
J

}

and
F

µν
I = kµ

I A
ν
I − kν

IA
µ
I − ∑

I=JK

(
A

µ
J A

ν
K −A

µ
KA

ν
J

)

Amplitudes

S′MC[A
′] = ∑

n≥3

1
n ∑

i≥1
∑

I∈Wn−1

δ(kiI)sIAi ·AI tr(TaiI )
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Thanks for your attention!
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