Neutrino oscillation experiments

Erika Cataño-Mur William & Mary (VA, USA)

and the second second

WILLIAM & MARY

5th ComHEP, December 1st, 2020

CHARTERED 1693

Neutrino oscillations

- The "active" neutrinos are produced and detected as one of three definite weak eigenstates: v_e , v_{μ} , v_{τ}
- "Neutrino oscillations" refers to the phenomenon where lepton flavor is not conserved in neutrino propagation
- Ex.: neutrinos created in one flavor (v_{μ}), travel a distance L, and are detected in another flavor (v_{e})

• Each flavor (e, μ) is a superposition of different masses (1, 2)

$$\nu_{\alpha} \rangle = \sum_{i} U_{\alpha i}^{*} |\nu_{i}\rangle$$

$$(\nu_{e} \\ \nu_{\mu}) = \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix} \begin{pmatrix} \nu_{1} \\ \nu_{2} \end{pmatrix}$$

Erika Catano-Mur (William & Mary, NOvA)

Oscillations require two essential ingredients:

$$P(\nu_{\alpha} \to \nu_{\beta}) = \left| \sum_{i} U_{\alpha i}^{*} e^{-i \frac{m_{i}^{2}L}{2E}} U_{\beta i} \right|^{2}$$

(1) The PMNS matrix ("mixing" matrix: connects flavor to mass states) must have off-diagonal elements

$$\begin{pmatrix} \nu_e \\ \nu_\mu \\ \nu_\tau \end{pmatrix} = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{pmatrix} \begin{pmatrix} \nu_1 \\ \nu_2 \\ \nu_3 \end{pmatrix}$$

(2) The neutrino mass states must have differing mass eigenvalues

3

Oscillations require two essential ingredients:

$$P(\nu_{\alpha} \to \nu_{\beta}) = \left| \sum_{i} U_{\alpha i}^{*} e^{-i \frac{m_{i}^{2}L}{2E}} U_{\beta i} \right|$$

(1) The PMNS matrix ("mixing" matrix: connects flavor to mass states) must have off-diagonal elements

$$\begin{pmatrix} \nu_e \\ \nu_\mu \\ \nu_\tau \end{pmatrix} = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{pmatrix} \begin{pmatrix} \nu_1 \\ \nu_2 \\ \nu_3 \end{pmatrix}$$

... and it does! (We know some of the elements much better than others)

J Wolcott JETP2020 NuFIT arXiv:2007.14792

(2) The neutrino mass states must have differing mass eigenvalues

12

... and they do! (These differences are known quite well, ~2-3%.)

Erika Catano-Mur (William & Mary, NOvA)

(only know magnitude)

3-flavor oscillation probabilities

- We need mixing of at least 3 neutrino states to fully describe current experimental results
 - Additional mass eigenstates: 3+1, 3+N models \rightarrow "sterile" neutrino searches
- In some limits, the observed results can be understood in terms of oscillations driven by one Δm^2 0.07

Neutrino appearance $P(\nu_{\alpha} \to \nu_{\beta}) \simeq \sin^2(2\theta) \sin^2\left(\frac{\Delta m^2 L}{4E}\right)$

Neutrino disappearance

$$P(\nu_{\alpha} \to \nu_{\alpha}) \simeq 1 - P(\nu_{\alpha} \to \nu_{\beta})$$

• In matter, v_e 's act differently from v_{μ} 's and v_{τ} 's: they obtain a phase shift from coherent charged current forward scattering \rightarrow possible resonant enhancement

Parametrization of the mixing matrix

 The mixing matrix can be written in terms of 3 angles and 1 phase. Usually factorized into components directly related to the experiments:

- Current experiments \rightarrow precision measurements of the angles
- Poorly known: θ_{23} (~5%), δ_{CP} (~unconstrained)
 - Q: is θ_{23} maximal? i.e. is there symmetry in v_{μ} , v_{τ} mixing to v_2 , v_3 ? If not, what is the octant?
 - Q: is $\delta_{CP} \neq 0, \pi$? i.e. is CP violated in the neutrino sector?

Squared mass differences and hierarchy

- Neutrino oscillation experiments can access the mass differences squared
- By convention, we denote the mass eigenstate with the largest fraction of v_e as v_1
- Q: mass eigenstate is the lightest? → "hierarchy"
 - Normal: v_1 is the lightest, just like the electron is the lightest charged lepton
 - Inverted: v_3 is the lightest

Neutrino oscillation experiments at a glance

Experimental study of neutrino oscillations

$$\begin{array}{c}
\mu \quad \mathbf{v}_{\mu} \\
\mathcal{V}_{\mu} \\$$

- Neutrino oscillations have been experimentally studied using various neutrino sources and detection techniques.
- Considerations:
 - Large distances may be necessary for observable oscillation effects
 - Neutrino interactions have small cross-sections
 - → Need intense sources and large detectors
 - Need to know the **neutrino flux** before oscillations with sufficient precision for a definitive measurement

Sources of ν 's for oscillation studies

Erika Catano-Mur (William & Mary, NOvA)

Solar neutrinos

- Electron neutrinos are produced in the thermonuclear reactions which generate the solar energy
- Neutrinos are produced in different reactions with energies ranging from 0.1 to 20 MeV
- Detailed calculation of the solar neutrino fluxes based on the Standard Solar Model

				<u>PDG2020</u>
Name	Target material	Energy threshold (MeV)	Mass (ton)	Years
Homestake	C_2Cl_4	0.814	615	1970 - 1994
SAGE	${ m Ga}$	0.233	50	1989 -
GALLEX	GaCl_3	0.233	100 [30.3 for Ga]	1991 - 1997
GNO	GaCl_3	0.233	100 [30.3 for Ga]	1998 - 2003
Kamiokande	H_2O	6.5	3,000	1987 - 1995
Super-Kamiokande	H_2O	3.5	50,000	1996 -
SNO	D_2O	3.5	1,000	1999 - 2006
KamLAND	Liquid scintillator	0.5/5.5	1,000	2001 - 2007
Borexino	Liquid scintillator	0.19	300	2007 -

Erika Catano-Mur (William & Mary, NOvA)

11

Solar news

- Super-Kamiokande:
 - Added statistics
 - Solar neutrino measurements: New spectrum and Day/Night asymmetry measurements to test MSW
 - SK+SNO fit disfavors the KamLAND best fit value at ~1.4 σ (was ~2 σ)
- Borexino:
 - Borexino now has observed the neutrino spectrum from the CNO cycle (at 5 σ)
 - After a long effort to better understand their Po background
 - Expectation: better understanding of the solar metallicity

Atmospheric neutrinos

- Atmospheric neutrinos are produced by the decays of pions and kaons generated in the interaction of cosmic rays and nucleons in the Earth's atmosphere.
- Broad range of energy (~0.1 GeV to >TeV)
- Long travel distances (~10 to 1.3×10⁴ km)
- Neutrino telescopes (ANTARES, IceCube) can also measure oscillations with atmospheric neutrinos.

Experiment	Detection technique	Type of events	Fiducial mass (kt)	Total exposure
Baksan	Liquid scintillator	Up-through-µ	-	10.55 year
NUSEX	Gas counter- iron plate	FC	0.13	0.74 kt · year
Frejus	Gas counter-	FC	0.7	2.0 kt · year
	iron plate	PC	0.7	2.0 kt · year
Kamiokande	Water	FC	1.04-1.35	7.7-8.2 kt · yea
	Cherenkov			
		PC	1.04	6.0 kt · year
		Up-through- μ	-	6.7 year
IMB	Water Cherenkov	FC	3.3	7.7 kt · year
		Up-through-µ	_	3.6 year
		Up-stopping-µ	-	3.6 year
Soudan-2	Gas counter-	FC	0.77	5.9 kt · year
	iron plate	PC		5.9 kt · year
MACRO	Liquid scintillator	Up-through- μ	_	6.17 yearb
	+ gas counter		_	5.6 year
			-	5.8 year
Super-	Water	FC	22.5	92 kt · year
Kamiokande	Cherenkov	PC	22.5	92 kt - year
		Up-through- μ	_	4.5 year
		Up-stopping-µ	-	4.5 year

13

Atmospheric news

- Super-Kamiokande:
 - SK-Gd era is about to start (Neutrino/antineutrino discrimination)
 - New results using the full data sets from SK-I to SK-IV
 - Analysis improvements include: neutron tagging, new event selection
 - SK data disfavors Inverted Hierarchy at 71.4-90.3% CLs (was 81.9-96.1% in 2018)
 - Also prefers: 1st θ_{23} octant and $\delta_{CP}{\sim}3/2\pi$
- IceCube
 - New oscillation measurements from IceCube DeepCore with 8 y live time are coming soon
 - IceCube Upgrade will enable more precise measurements of low energy neutrino properties, and better calibrations will benefit entire IceCube science program

Reactor antineutrinos

- Nuclear reactors are very intense sources of $\overline{\nu}_e$'s in the MeV energy region; generated in nuclear fission of heavy isotopes
- $\overline{\nu}_e$ disappearance is the only channel available (low energy \rightarrow cannot produce heavier charged leptons)
- O(100) km baseline → sensitive to Δm² of 10⁻⁴-10⁻⁵ eV²
- O(1) km baseline \rightarrow sensitive to Δm^2 of 10^{-2} – 10^{-3} eV^2
- Inverse beta decay \rightarrow detection

Name	Reactor power (GW_{th})	Baseline (km)	Detector mass (t)	Year
KamLAND	various	180 (ave.)	1,000	2001 -
Double Chooz	$4.25{ imes}2$	1.05	8.3	2011 - 2018
Daya Bay	$2.9{ imes}6$	1.65	$20{ imes}4$	2011 -
RENO	$2.8{ imes}6$	1.38	16	2011 -
JUNO	26.6 (total)	53	20,000	

PDG2020

Reactor news

RENO

 $\sin^2 2\theta_{13} = 0.0892 \pm 0.0044(stat.) \pm 0.0045(sys.) \pm 7.0\%$

 $|\Delta m_{ee}^2| = 2.74 \pm 0.10(stat.) \pm 0.06(sys.)(\times 10^{-3} \text{eV}^2) \pm 4.4\%$

- Daya Bay:
 - Still has the most precise measurements of $sin^2 2\theta_{13}$
 - Final results expected by Neutrino 2022

- Double Chooz
 - Increased statistics
 - New result: $\sin^2 2\theta_{13} = 0.102 \pm 0.012$ (w/ full two detectors data)
 - Still room for improvement in the precision
 - Double Chooz reaching its life-cycle end

Ling Nu2020

Bonus: more reactor experiments

- Recent reactor experiments searching for $\sim 1 \, eV^2$ oscillations
- Distance of ~ 10 m from the core
- Detectors are based on organic scintillators (liquid = LS, plastic = PS)

Name	Reactor power	Baseline	Detector mass	Detector	S/B
	$({ m MW_{th}})$	(m)	(t)	technology	
NEOS	$2,\!800$	24	1	Gd-LS	22
DANSS	$3,\!100$	10 - 12	0.9	$\operatorname{Gd-PS}$	~ 30
STEREO	57	9 - 11	1.7	$\operatorname{Gd-LS}$	0.9
PROSPECT	85	7 - 9	4	6 Li-LS	1.3
NEUTRINO-4	100	6 - 12	1.5	$\operatorname{Gd-LS}$	0.5
SoLid	80	6–9	1.6	⁶ Li-PS	

Table 14.5: List of reactor antineutrino experiments for $O(eV^2)$ oscillations

PDG2020

Accelerator neutrinos

- Proton beam is steered onto a target
- Produced hadrons are focused in and charge-sign-selected by two lacksquaremagnetic horns, then go into a decay pipe
- Predominantly pions and kaons, decay modes: •

 $\begin{array}{l} \pi^+ \to \mu^+ + \nu_{\mu}, \\ K^+ \to \mu^+ + \nu_{\mu} \end{array} \implies \mathbf{v}_{\mu} \text{ beam} \end{array}$

- Small contamination: v_e , \overline{v} lacksquare
- Reverse the horn current $\Rightarrow \overline{\nu}_{\mu}$ beam
- Here: NuMI beam (Fermilab). Equivalent designs at CERN, JPARC

Decay Pipe

Long baseline experiments

- Measurements of the unoscillated beam \rightarrow improve the predictions
- Sources of uncertainty include
 - Flux: number of neutrinos produced
 - **Cross section**: how often they interact
- ND/FD same type of detector (NOvA, MINOS)
- FD off-axis (NOVA, T2K); On-axis (MINOS)

Name	Beamline	Far Detector	L (km)	E_{ν} (GeV)	Year
K2K	KEK-PS	Water Cherenkov	250	1.3	1999 - 2004
MINOS	NuMI	Iron-scintillator	735	3	2005 - 2013
MINOS+	NuMI	Iron-scintillator	735	7	2013 - 2016
OPERA	CNGS	Emulsion	730	17	2008 - 2012
ICARUS	CNGS	Liquid argon TPC	730	17	2010 - 2012
T2K	J-PARC	Water Cherenkov	295	0.6	2010 -
NOvA	NuMI	Liquid scint. tracking calorimeter	810	2	2014 -

19

Measure the oscillated

Compare to the prediction without oscillations

S:	$ u_{\mu}$ -	$\rightarrow \nu_{\mu},$	$ u_{\mu}$	$\rightarrow \nu_e,$
	$\overline{ u}_{\mu}$	$\rightarrow \overline{\nu}_{\mu}$,	$\overline{ u}_{\mu}$	$\rightarrow \overline{\nu}_e$

PDG2020

Long baseline news (1)

- MINOS/MINOS +
 - Final long-baseline results presented at Neutrino 2020

Normal hierarchy, non-maximal mixing $\Delta m_{32}^2 = 2.40^{+0.08}_{-0.09} \times 10^{-3} \,\mathrm{eV}^2$ $\sin^2 \theta_{23} = 0.43 \ (0.39 \leftrightarrow 0.63) \ 68 \% \ C.L.$

- T2K:
 - Results with 33% more v-mode data.
 - Upgrades to the interaction and flux modeling
 - Coming soon:
 - Power upgrade 515kW->810kW by FY2022
 - ND280 upgraded in 2022 with a new higher angular coverage TPC and 3D Super-FGD subdetector
 - SK-Gd loading for neutron tagging imminent

Carroll Nu2020

Long baseline news (2)

NOvA

- Results with 50% more neutrino beam data
- Updated simulation and reconstruction, including a new GENIE 3 cross-section model
- Anticipate running until 2025.
 - New 3-flavor oscillation results:
 - $-\Delta m_{32}^2 = (2.41 \pm 0.07) \times 10^{-3} \text{ eV}^2$
 - $-\sin^2\theta_{23} = 0.57^{+0.04}_{-0.03}$
 - exclude IH, $\delta = \pi/2$ at > 3 σ ,
 - disfavor NH, $\delta = 3\pi/2$ at $\sim 2\sigma$.
- NOvA + T2K
 - Combined analysis of data allows degeneracies to be broken and maximizes impact of data
 - Work towards T2K+NOvA is underway

Erika Catano-Mur (William & Mary, NOvA)

Putting it all together

22

3- ν oscillation analysis

• The determination of the leptonic parameters requires global analysis of the data from the different experiments

Table 14.6: Experiments contributing to the present determination of the oscillation parameters.

Experiment	Dominant	Important
Solar Experiments	θ_{12}	$\Delta m^2_{21} \;, heta_{13}$
Reactor LBL (KamLAND)	Δm^2_{21}	$ heta_{12}\;, heta_{13}$
Reactor MBL (Daya-Bay, Reno, D-Chooz)	$\theta_{13}, \Delta m^2_{31,32} $	
Atmospheric Experiments (SK, IC-DC)		$ \theta_{23}, \Delta m^2_{31,32} , heta_{13},\delta_{ m CP} $
Accel LBL $\nu_{\mu}, \bar{\nu}_{\mu}$, Disapp (K2K, MINOS, T2K, NO ν A)	$ \Delta m^2_{31,32} , \theta_{23} $	
Accel LBL $\nu_e, \bar{\nu}_e$ App (MINOS, T2K, NO ν A)	$\delta_{ m CP}$	$ heta_{13} \;, heta_{23}$

PDG2020

- Recent references: (pre/post Neutrino 2020)
 - 2020 Global reassessment of the neutrino oscillation picture arXiv:2006.11237 [hep-ph] P. F. de Salas, D. V. Forero, S. Gariazzo, P. Martínez-Miravé, O. Mena, C. A. Ternes, M. Tórtola, J. W. F. Valle
 - The fate of hints: updated global analysis of three-flavor neutrino oscillations arXiv:2007.14792 [hep-ph]

I. Esteban, M.C. Gonzalez-Garcia, M. Maltoni, T. Schwetz, A. Zhou

3- ν oscillation analysis

- Updates since Neutrino 2020: (arXiv:2007.14792)
 - Long baseline accelerator:
 - NOvA added stats to neutrino sample, changes to antineutrino analysis
 - T2K added stats to neutrino sample, changes to antineutrino analysis
 - Reactor experiments:
 - DoubleChooz from 818/258 to 1276/587 days of far/near detector data
 - RENO from 2200 to 2908 days of exposure
 - Solar experiments:
 - Super-Kamiokande: total energy spectrum and the day-night asymmetry of the 2970-day sample
 - Note: reduced tension between KamLAND and solar

Figure 6. Global 3ν oscillation analysis. We show $\Delta\chi^2$ profiles minimized with respect to all undisplayed parameters. The red (blue) curves correspond to Normal (Inverted) Ordering. Solid (dashed) curves are without (with) adding the tabulated SK-atm $\Delta \chi^2$. Note that as atmospheric mass-squared splitting we use Δm_{31}^2 for NO and Δm_{32}^2 for IO.

- Best fit in the global analysis remains for the normal mass ordering with reduced significance
- T2K + NOvA LBL results favor inverted mass ordering
- Mild preference for non-maximal mixing, upper octant
- Best fit for the CP phase close to CPconserving in the NH

NuFIT arXiv:2007.14792

		Normal Ordering (best fit)		Inverted Ordering $(\Delta \chi^2 = 2.7)$		
		bfp $\pm 1\sigma$	3σ range	bfp $\pm 1\sigma$	3σ range	
۲	$\sin^2 heta_{12}$	$0.304\substack{+0.013\\-0.012}$	$0.269 \rightarrow 0.343$	$0.304\substack{+0.013\\-0.012}$	$0.269 \rightarrow 0.343$	
data	$ heta_{12}/^\circ$	$33.44\substack{+0.78\\-0.75}$	$31.27 \rightarrow 35.86$	$33.45\substack{+0.78 \\ -0.75}$	$31.27 \rightarrow 35.87$	
heric	$\sin^2 heta_{23}$	$0.570\substack{+0.018\\-0.024}$	$0.407 \rightarrow 0.618$	$0.575\substack{+0.017\\-0.021}$	$0.411 \rightarrow 0.621$	
dsou	$ heta_{23}/^{\circ}$	$49.0^{+1.1}_{-1.4}$	$39.6 \rightarrow 51.8$	$49.3^{+1.0}_{-1.2}$	$39.9 \rightarrow 52.0$	
(atn	$\sin^2 heta_{13}$	$0.02221\substack{+0.00068\\-0.00062}$	$0.02034 \rightarrow 0.02430$	$0.02240\substack{+0.00062\\-0.00062}$	$0.02053 \rightarrow 0.02436$	
tt SK	$ heta_{13}/^{\circ}$	$8.57^{+0.13}_{-0.12}$	8.20 ightarrow 8.97	$8.61\substack{+0.12 \\ -0.12}$	$8.24 \rightarrow 8.98$	
ithou	$\delta_{ m CP}/^{\circ}$	195^{+51}_{-25}	$107 \rightarrow 403$	286^{+27}_{-32}	$192 \rightarrow 360$	
W	$\frac{\Delta m^2_{21}}{10^{-5}~{\rm eV}^2}$	$7.42\substack{+0.21 \\ -0.20}$	6.82 ightarrow 8.04	$7.42^{+0.21}_{-0.20}$	$6.82 \rightarrow 8.04$	
	$\frac{\Delta m^2_{3\ell}}{10^{-3} \ {\rm eV}^2}$	$+2.514\substack{+0.028\\-0.027}$	$+2.431 \rightarrow +2.598$	$-2.497\substack{+0.028\\-0.028}$	$-2.583 \rightarrow -2.412$	
		Normal Ore	lering (best fit)	Inverted Orde	ering $(\Delta \chi^2 = 7.1)$	
		bfp $\pm 1\sigma$	3σ range	bfp $\pm 1\sigma$	3σ range	
	$\sin^2 heta_{12}$	$0.304\substack{+0.012\\-0.012}$	$0.269 \rightarrow 0.343$	$0.304\substack{+0.013\\-0.012}$	$0.269 \rightarrow 0.343$	
lata	$ heta_{12}/^{\circ}$	$33.44\substack{+0.77\\-0.74}$	$31.27 \rightarrow 35.86$	$33.45\substack{+0.78 \\ -0.75}$	$31.27 \rightarrow 35.87$	
ric ($\sin^2 heta_{23}$	$0.573\substack{+0.016\\-0.020}$	$0.415 \rightarrow 0.616$	$0.575\substack{+0.016\\-0.019}$	$0.419 \rightarrow 0.617$	
sphe	$ heta_{23}/^{\circ}$	$49.2\substack{+0.9 \\ -1.2}$	$40.1 \rightarrow 51.7$	$49.3_{-1.1}^{+0.9}$	$40.3 \rightarrow 51.8$	
atmo	$\sin^2 heta_{13}$	$0.02219\substack{+0.00062\\-0.00063}$	$0.02032 \rightarrow 0.02410$	$0.02238\substack{+0.00063\\-0.00062}$	$0.02052 \rightarrow 0.02428$	
SK a	$ heta_{13}/^\circ$	$8.57\substack{+0.12 \\ -0.12}$	8.20 ightarrow 8.93	$8.60\substack{+0.12\\-0.12}$	$8.24 \rightarrow 8.96$	
$^{\mathrm{th}}$	1			222+26	100 . 050	
wi	$\delta_{ m CP}/^{\circ}$	197^{+27}_{-24}	$120 \rightarrow 369$	282^{+20}_{-30}	$193 \rightarrow 352$	
wi	$\delta_{ m CP}/^{\circ} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	197^{+27}_{-24} $7.42^{+0.21}_{-0.20}$	$\begin{array}{c} 120 \rightarrow 369 \\ 6.82 \rightarrow 8.04 \end{array}$	282^{+20}_{-30} $7.42^{+0.21}_{-0.20}$	$193 \rightarrow 352$ $6.82 \rightarrow 8.04$	

NuFIT <u>arXiv:2007.14792</u>

Table 3. Three-flavor oscillation parameters from our fit to global data. The numbers in the 1st (2nd) column are obtained assuming NO (IO), *i.e.*, relative to the respective local minimum. Note that $\Delta m_{3\ell}^2 \equiv \Delta m_{31}^2 > 0$ for NO and $\Delta m_{3\ell}^2 \equiv \Delta m_{32}^2 < 0$ for IO. The results shown in the upper (lower) table are without (with) adding the tabulated SK-atm $\Delta \chi^2$.

Conclusion

- Reactor

- Neutrinos oscillate!
- Wide range of combinations of neutrino sources / detection techniques
- The determination of the leptonic parameters requires global analysis of the data from the different experiments

Experiment	Dominant	Important
Solar Experiments	θ_{12}	$\Delta m^2_{21} \;, heta_{13}$
Reactor LBL (KamLAND)	Δm^2_{21}	$ heta_{12} \;, heta_{13}$
Reactor MBL (Daya-Bay, Reno, D-Chooz)	$ \theta_{13}, \Delta m^2_{31,32} $	
Atmospheric Experiments (SK, IC-DC)		$ heta_{23} \Delta m^2_{31,32} , heta_{13} $
Accel LBL $\nu_{\mu}, \bar{\nu}_{\mu}$, Disapp (K2K, MINOS, T2K, NO ν A)	$ \Delta m^2_{31,32} , \theta_{23} $	
Accel LBL $\nu_e, \bar{\nu}_e$ App (MINOS, T2K, NO ν A)	$\delta_{ m CP}$	$ heta_{13} \;, heta_{23}$

- Progressively increasing the precision of angles and mass squared differences; with more stats agreement between experiments tends to improve
- Still unknown: CP phase and neutrino mass hierarchy. It might be possible to achieve 2-3 σ , higher at very favorable true parameters, by the end of current experiments' lifetime. The next generation (e.g. HyperK, DUNE) will likely do better, ~5 σ within a few years of running.
- Many more exciting v news to come!

 $, \delta_{\mathrm{CP}}$

PDG2020

Artwork by Sandbox Studio, Chicago with Corinne Mucha

