Dark Matter at the LHC

December 4, 2019

Andreas Albert on behalf of ATLAS and CMS

В

Dark matter?

Ample evidence from the cosmos

Cosmic microwave background

"Picture of electromagnetic matter,

30k years after big bang"

 \rightarrow \approx 27% of energy in universe is DM

One Candidate:

"Weakly interacting massive particle" (WIMP)

- Weak coupling to known particles
- Can account for observed DM phenomena

How to find WIMPs?

Direct detection "WIMP from universe bumps into our detector"

Indirect detection Observe DM annihilation in the universe

Withp known particles WINP **Collider** Produce DM from collisions of known particles

Certainty only if results from all three are consistent!

Dec 5th, 2019

Geneva – the city

CERN Prévessin

LHC.

km

ATLAS

SPS_7 km

FRN-Meynin

ALICE

Geneva – the lake

SUISSE

FRANCE

CMS

Geneva – the city

Large Hadron Collider (LHC): Proton-proton collisions

Geneva – the lake

MS

SUISSI

FRANCI

CMS Integrated Luminosity Delivered, pp

Data included from 2010-03-30 11:22 to 2018-10-26 08:23 UTC

27 km

ATLAS + CMS:

Multi-purpose, can observe – the ci large range of SM and BSM, work best at low n

LHCb:

Focus on B physics, large η only

How do searches work? Depends!

How do SM and DM particles interact?

How do SM and DM particles interact?

The Higgs portal

$H(125) \rightarrow invisible$

Attractive because simple: No new interaction needed!

For reference: invisible BR of Z is known to \approx 3 permille

Measurement strategies driven by Higgs production modes

PDG Higgs review

Dec 5th, 2019

Principle of detection: p_{T}^{miss}

Detect "invisible" particles from momentum balance of reconstructed particles

Experiment requires presence of detectable "tag" particles: Jets, photons, ...

10.1016/j.physletb.2019.04.025

Distinctive dijet signature drives sensitivity $\eta_{j_1} \times \eta_{j_2} < 0$ small $\Delta \phi_{j_j} < 1.5$ large $\Delta \eta_{j_j} > 1.0$ large $m_{j_j} > 200 \text{ GeV}$ + large $p_{\tau}^{\text{miss}} > 250 \text{ GeV}$

Backgrounds dominated by Z(vv), W(lv) Low-m_{jj}: jets from ISR ("QCD") high-mjj: W, Z from VBF ("EW")

Dec 5th, 2019

Background estimation + signal extraction

Basic likelihood

Poisson fluctuation of data counts n, around expectation from signal s, and background b,

$$\mathcal{L}(\text{data} \mid \mu, \theta) = \prod_{i \in \text{bins}} \frac{(\mu \times s_i(\theta) + b_i(\theta))^{n_i}}{n_i!} \exp\left(-\mu \times s_i(\theta) - b_i(\theta)\right) \\ \times \prod_{j \in \text{nuisances}} p_j\left(\tilde{\theta}_j \mid \theta_j\right) \quad \longleftarrow \quad \text{Gaussian constraint term for } \theta$$

- s_i, b_i from Monte Carlo simulation + corrections
- Uncertainties modeled with nuisance parameters θ
- θ dependence from alternative templates (i.e. re-running analysis)

\rightarrow Determine best-fit θ , signal strength μ by maximizing likelihood

Using control regions

Goal: Estimate mjj shape for W, Z

Control regions with leptonic decays: Z(ee), Z($\mu\mu$), W(ev), W($\mu\nu$)

Combined maximum-likelihood fit transfer factors + uncertainties based on simulation

 \rightarrow Only process *ratios* from sim, shape + norm form data

10.1016/j.physletb.2019.04.025

Uncertainties partially factorize!

hundandandan handan <mark>ara ba</mark>

2.5 3 3.5 4 4.5

15

10

A. Albert - DM @ LHC

m_{ii} [TeVi

One observable, may channels: combine, combine, combine

VBF dominates combined results, but others still contribute

Full Run-2 results in the making!

Limitations to attack: p_{τ}^{miss} trigger threshold, theory uncertainties

10.1016/j.physletb.2019.04.025 Dec 5th, 2019

A. Albert - DM @ LHC

Phys. Rev. Lett. 122 (2019) 231801

Simplified models

Interpretation: Simplified models

Simplified models with few free parameters: m_{med,} m_{DM}, mediator-quark coupling, mediator-DM coupling minimal flavour violation

Benchmarks defined by LHC Dark Matter working group

Dec 5th, 2019

Always present: Initital state radiation

ATLAS monojet 2015+16

Similar strategy to VBF H(inv): More inclusive, no VBF topology

jet pt > 250 GeV p_T^{miss} > 250 GeV no leptons

 \rightarrow W and Z are leading BG

Combined fit with W(lv) and Z(ll) control regions this time only get normalization + nuisances from data

Strategy varies a bit in CMS, but similar in principle

10.1140/epjc/s10052-017-5389-1

Sensitivity driver: theory uncertainties on process ratios

Precise predictions for V+jets dark matter backgrounds

J. M. Lindert^{II}, S. Pozzorini², R. Boughezal², J. M. Campbell⁴, A. Denner⁵, S. Dittmaier⁶, A. Gehrmann-De Ridder²¹⁷, T. Gehrmann², N. Glover^{II},

A. Huss⁷, S. Kallweit⁸, P. Maierhöfer⁶, M. L. Mangano⁸, T.A. Morgan¹⁰

A. Mück²⁰, F. Petriello²⁰⁰⁰, G. P. Salam²⁰, M. Schönherr²⁰, C. Williams¹¹⁰

Dec 5th, 2019

JHEP 01 (2018) 126

Monojet: Spin-1 exclusion

10.1103/PhysRevD.97.092005

Monojet: Spin-1 exclusion

Dec 5th, 2019

Rinse and repeat

Dec 5th, 2019

Searching for the mediator

Dec 5th, 2019

Resonance searches

"Bump hunt"

Look for resonance on top of smoothly falling background

BG can be fully data-driven, few uncertainties

Important:

- Signal shape (resolution, proton PDF)
- triggering

E.g.: "Classical dijet"

Triggering based on high- p_{T} jets

- \rightarrow powerful at high mass
- \rightarrow Cannot extend to low masses (trigger rates too high)

Dec 5th, 2019

Event with highest m(jj) in ATLAS

Run: 329716 Event: 857582452 2017-07-14 10:48:51 CEST

arXiv:1910.08447

m(jj) = 9.5 TeV ≈ 75% of √s(pp)

Main challenge: How to cover the full mass range?

Resonance produced at \approx rest

Trigger on decay product pt alone works only at high mass

Instead: low-mass resonance with high pt

Dec 5th, 2019

Key: Substructure techniques

Select $Z' \rightarrow qq$, reject QCD multijet

Jet mass "grooming" soft-drop (SD) algorithm corrects for parton shower, pileup contributions

Two-prong tagging with mass-decorrelated high-level variable based on analytical energy correlation functions

 \rightarrow Not a neural network!

Observing $Z/W \rightarrow qq$ in this way was not seen as possible 10 years ago!

Dec 5th, 2019

Z' coupling to quarks, assume $BR(Z' \rightarrow qq) = 100\%$

Putting the pieces together

Simplified model spin-1 summary: gq = 0.25

Dec 5th, 2019

Simplified model spin-1 summary: gq = 0.1

Lower quark couplings: Dijet scales as $\approx g_q^4$, ptmiss as $\approx g_q^2$ (naively)

For $g_q = 0.1$, mediator width is low enough that resonant dilepton search can contribute

Dec 5th, 2019

Simplified model spin-1 summary: $g_a = 0.1, g_l = 0.1$

Dec 5th, 2019

Spin-0 mediators

Top + DM

Minimal model: mediator is only new boson Mass-dependent coupling \rightarrow tops!

Previously underappreciated: single top + MET adds significant sensitivity

Same fit strategy as before, but categorize based on object multipl.

Dec 5th, 2019

Top + DM: Post-discovery potential?

Fully leptonic channel plays ≈ no role for discovery sensitivity

Dilepton angular distribution could distinguish scalar vs pseudoscalar

$$\cos \theta_{\ell\ell} \equiv \tanh \left(\Delta \eta_{\ell\ell} / 2 \right)$$

Theory study, 100fb-1 @ 14 TeV 14 12 10 scalar, 100 GeV pseudoscalar, 100 GeV - SM background 0.3 0.4 0.5 0.6 0.2 0.7 0.8 0.9

 $|\cos\theta_{\parallel}|$

A. Albert - DM @ LHC

events/bin/(100 fb⁻¹)

Non-minimal spin-0

SM Higgs easiest to observe in interactions with SM bosons. Can we also have that?

Yes! Go from

"a+2HDM" Extra complexity needed for theo. consistency Dec 5th, 2019

More complicated dark sectors

NB: "the dark matter candidate" not always clearly defined here

Dark photons

QED-like interaction among dark sector particles

Loop-induced mixing with SM photon, strength $\boldsymbol{\epsilon}$

Typically assumed that new U(1) is broken to avoid long-range force \rightarrow massive dark photon

Two scenarios:

- Dark sector heavier than $\gamma_{_D} \rightarrow$ decays to SM
- Dark sector lighter \rightarrow invisible decays

Image credit: M. Borsato

LHCb exclusion reach

10.1103/PhysRevLett.120.061801 arxiv:1910.06926

Production from meson decays proves essential

Emerging jets

Emerging jets

Parton shower + hadronization in dark sector At some point, hadrons decay to SM

Dec 5th, 2019

Emerging jets

+ z displacement of tracks, IP significance

Identify jets based on properties of tracks

Categorize based on #tagged jets, HT, jet pts

Central challenge: measure rate of SM jet mistags in control region.

Strong flavour dependence!

PV track

Emerging jets exclusion

Can probe wide range of m vs cτ, but that is secondary

Most important: Dark sector signatures can be **very** exotic. Cover them!

44

Dec 5th, 2019

Conclusions

Summary + conclusion

- LHC has mature DM search program
- Many channels, (almost) all of which are necessary
- Standard searches: Full Run-II incoming, after that: no more easy mass gains!
 → Focus on driving down coupling, today's constraints O(0.1) still loose
- Increasing activity in more exotic scenarios. Leave no stone unturned!

Backup

Dec 5th, 2019

48

Emerging jet categorization

Set number	H_{T}	$p_{\mathrm{T},1}$	$p_{\mathrm{T},2}$	$p_{\mathrm{T},3}$	$p_{\mathrm{T,4}}$	$p_{\mathrm{T}}^{\mathrm{miss}}$	$n_{\rm EMJ}(\geq)$	EMJ group	no. models	
1	900	225	100	100	100	0	2	1	12	
2	900	225	100	100	100	0	2	2	2	
3	900	225	100	100	100	200	1	3	96	
4	1100	275	250	150	150	0	2	1	49	
5	1000	250	150	100	100	0	2	4	41	
6	1000	250	150	100	100	0	2	5	33	
7	1200	300	250	200	150	0	2	6	103	
8	900	225	100	100	100	0	2	7	SM OCD onhanced	
9	900	225	100	100	100	200	1	8	Swi &OD-emianced	

Table 3. The seven optimized selection sets used for this search, and the two SM QCD-enhanced selections (sets 8 and 9) used in tests of the background estimation methods. The headers of the columns are: the scalar $p_{\rm T}$ sum of the four leading jets ($H_{\rm T}$) [GeV], the requirements on the $p_{\rm T}$ of the jets ($p_{\rm T,i}$) [GeV], the requirement on $p_{\rm T}^{\rm miss}$ [GeV], the minimum number of the four leading jets that pass the emerging jet selection ($n_{\rm EMJ}$), and the EMJ criteria group described in table 2. The last column is the total number of models defined in table 1 for which the associated selection set gives the best expected sensitivity.

Dec 5th, 2019

"Particle Flow" (PF): Reconstruct particle candidates from combined sub-detector information.

Dec 5th, 2019

pairwise angles among *n*-jet constituents [63]. In particular, the 2-point $(_1e_2)$ and 3-point $(_2e_3)$ correlation functions are defined as:

$$_{1}e_{2} = \sum_{1 \le i \le n} z_{i}z_{j}\Delta R_{ij} , \qquad (1)$$

$${}_{2}e_{3} = \sum_{1 \le i < j < k \le n} z_{i} z_{j} z_{k} \min\{\Delta R_{ij} \Delta R_{ik}, \Delta R_{ij} \Delta R_{jk}, \Delta R_{ik} \Delta R_{jk}\},$$
(2)

where z_i represents the energy fraction of the constituent *i* in the jet and ΔR_{ij} is the angular separation between constituents *i* and *j*. For a two-prong structure, signal jets have a stronger 2-point correlation than a 3-point correlation. The discriminant variable N_2^1 is then constructed via the ratio:

$$N_2^1 = \frac{2^{\varrho_3}}{(1^{\varrho_2})^2} \,. \tag{3}$$

Top + DM: Control regions for hadronic selection

	Single-le	pton CRs	All-hadronic CRs			
	$CR t\bar{t}(2\ell)$	$CR W(\ell \nu)$	$\overline{CR} t\overline{t}(1\ell)$	$CR W(\ell \nu)$	$\operatorname{CR} Z(\ell \ell)$	
n _b	≥ 1	=0	≥ 1	=0	=0	
$n_{\rm lep}$	=2	=1	=1	=1	=2	
n _{jet}	≥ 2	≥ 2	≥ 3	≥ 3	≥ 3	
$p_{\mathrm{T}}^{\mathrm{miss}}$	>160 GeV	$>160\mathrm{GeV}$	> 250 GeV	> 250 GeV	> 250 GeV	
m _T	—	$>160\mathrm{GeV}$	< 160 GeV	< 160 GeV	—	
$\min \Delta \phi(\mathbf{j}_{1,2}, \vec{p}_{\mathrm{T}}^{\mathrm{miss}})$			>1.0 rad.			
$m_{\ell\ell}$	_				[60, 120] GeV	

Dec 5th, 2019

A. Albert - DM @ LHC

550

Top + DM: Control regions for leptonic selection

Dec 5th, 2019

Relic density for spin-1 mediator

Check relic density as a function of mediator and dark matter particle mass

Dec 5th, 2019

Beware of model dependence!

Same coupling values, but different coupling structure

Both cases look identical at the LHC!

Dec 5th, 2019