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Motivation : QCD : assumed to be the fundamental theory behind nuclear physics,

formulated in terms of quark– and gluon–fields.

But what we perceive are hadrons:

baryons (“consisting of 3 quarks (qqq)”), such as protons and neutrons

mesons (“consisting of a quarks-antiquark pair (qq̄)”), such as pions and kaons.

However, consider nucleons: proton (uud) and neutron (udd)

masses (from Higgs mechanism) mu ≃ md ≈ 3 . . . 5 MeV

⇒ 3 valence quarks together account for O(1)% of Mnucleon ≃ 939MeV

Masses of macroscopic objects mostly due to mess of gluons (and sea-quarks) inside the

nucleons. ≈ 95% energy of (massless) gluons, not from the celebrated Higgs mechanism

Is this in agreement with the Standard Model, and in particular with QCD?

Answered only recently, by lattice simulations.

We summarise its concepts, some results and prospects for open questions.
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I. Concepts of Lattice QCD

Functional integral formulation of Quantum Field Theory in Euclidean space

• Partition function : Z =
∫
DΦ e−SE[Φ] (Φ(x) : some field, ~ = 1)

• n-point function:

〈0|T Φ̂(x1) . . . Φ̂(xn)|0〉 =
1

Z

∫

DΦ Φ(x1) . . .Φ(xn) e
−SE[Φ]

• Interpretation as a statistical system:

p[Φ] = e−SE[Φ]/Z
!
= probability of configuration [Φ] (if SE[Φ] ∈ RI +)

• Lattice regularisation:
discrete Euclidean space-time, lattice spacing a implies UV cutoff π/a
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Reduces Φ(x) to Φx, field variables defined only at lattice sites x

∫
DΦ → ∏

x

∫
dΦx is well-defined

Idea of Lattice Simulations :

Generate a large set of field configurations, independent and distributed
with probability p[Φ] ∝ exp(−SE[Φ]).

Summation over this set → measure observables (n-point functions) up to:

• statistical errors (finite set), to be estimated, ∝ 1/
√
statistics

• systematic errors (finite a, finite volume, (heavy Mπ)), can be varied
and extrapolated, estimate error in physical limit (continuum, . . . )

Truly non-perturbative ! Results at finite coupling strength.
No problem with strong coupling, in particular: QCD at low energy!

4



Monte Carlo Simulation and Numerical Measurement

Markov chain of confs [Φ] → [Φ′] → [Φ′′] . . . e.g. from a “hot start” (random conf.)

Condition: Detailed Balance for transition between confs. Φ1 ↔ Φ2 :

p[Φ1 → Φ2]

p[Φ2 → Φ1]

!
=

p[Φ2]

p[Φ1]

= exp(S[Φ1] − S[Φ2])

and ergodicity (no restriction) ⇒ after many steps: correct stat. distribution ∝ p[Φ]

Simple algorithm: Metropolis

Start from current conf. [Φ], suggest a new (modified) conf. [Φ′]

• IF S[Φ′] ≤ S[Φ] : accept !

• OTHERWISE : accept with probability exp(S[Φ] − S[Φ′]).

If accepted (rejected), continue with [Φ′] ([Φ]) ⇒ Detailed Balance is implemented
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First discard many steps, until equilibrium is attained (“thermalisation”).

Then pick well separated (“de-autocorrelated”) confs to measure observables.
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Measure e.g. connected correlation function of X(t) =
∑

~xΦ(~x, t)

〈X(s)X(s + t)〉c = 〈X(s)X(s + t)〉 − 〈X(s)〉 〈X(s + t)〉 ∝ cosh(M(t − β/2))

X(t) : field (product) in layer at Euclidean time t (periodic boundary conditions).

Fit yields energy gap M = E1 − E0 = {Mass of particle described by X} = 1/ξ

2nd order phase transition: correlation length ξ/a → ∞ : cont. limit ∼ critical point
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Lattice Gauge Theory

Consider a scalar field Φx ∈ CI with some action like

S[Φ] =
a2

2

∑

x,y

Φ
∗
xMxyΦy +

λ

4!
a
4
∑

x

|Φx|4

Mxy =

4∑

µ=1

(−δx+µ̂,y − δx−µ̂,y + 2δx,y) + (ma)
2
δx,y

|µ̂| = a, vector in µ-direction

Global symmetry Φy → exp(igϕ) Φy

is promoted to local symmetry Φy → exp(igϕy)Φy

by replacing the δ-links as

Φ
∗
xΦx+µ̂ → Φ

∗
xUx,µΦx+µ̂ , Ux,µ ∈ U(1)

Ux,µ : gauge link variable, Ux,µ= eigaAx,µ → exp(igϕx)Ux,µ exp(−igϕx+µ̂)
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Discrete covariant derivative, regularised system is gauge invariant.

Deal with compact link variables ∈ gauge group, also SU(N)

No gauge fixing needed !
Gauge Action

Plaquette variable : Ux,µν := U†
x,νU

†
x+ν̂,µUx+µ̂,νUx,µ ∈ SU(N)

x+aν

x

x+
aµ+aν

x+aµ

µν - plane

a

minimal lattice Wilson loop, closed → gauge invariant

Sgauge[U ] =
1

4a2g2

∑

x,µ<ν

(

2N − Tr[Ux,µν + U†
x,µν]

)

a→0
︷︸︸︷−→ 1

4

∑

x,µ,ν

TrFx,µνFx,µν + O(a
2
)
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Fermion fields : Ψ̄x, Ψy

Z =

∫

DΨ̄DΨ exp(−ψ̄iMijψj)

i, j run over :

• space-time points → lattice sites

• internal degrees of freedom (spinor index, possibly flavour, color)

M contains for each spinor a (discrete, Euclidean) Dirac operator.

Variety of formulations is used, but differences are irrelevant (in the RG sense).

With gauge interaction: covariant derivative.

Pauli Principle: components ψ̄i, ψj anti-commute,

representation by Grassmann variables : η1, η2, η3, . . . (Berezin ’66)

{ηi, ηj} = 0 ,
∂

∂ηi
ηj = δij =

∫

dηi ηj (no bounds)
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General results: fermion determinant and chiral condensate

∫

DΨ̄DΨ exp(−Ψ̄MΨ) = detM , 〈Ψ̄iΨj〉 = −(M
−1

)ij

⇒ Computer never deals with Grassmann variables, “just” needs detM, M−1 (though

typically millions of components . . . ) Bottleneck in simulations !

Optimal algorithm (HMC) circumvents computation of detM by updating an auxiliary

boson field ~Φ ∈ CI N

detM [U ] =

∫

DΦ exp(−~Φ†M [U ]−1~Φ)

Still requires M [U ]−1

Gauge action: shift for local update [U ] → [U ′] can be computed locally → fast

With fermions tedious, QCD: dynamical quarks cost O(100) times more compute time.
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Lattice QCD

• Gauge configuration [U ] : set of compact link variables Ux,µ ∈ SU(3).

• Gauge action: sum over plaquette variables Ux,µν.

• Quark fields Ψ̄, Ψ on lattice sites → fermion determinant

Z =

∫

DU detM [U ] exp(−Sgauge[U ])
︸ ︷︷ ︸

statistical weight of conf. [U ] → Monte Carlo

Measure correlation functions, e.g. of pseudoscalar density Px = Ψ̄xγ5Ψx, Pt =
∑

~x Px

〈Ps Ps+t 〉c ∝ exp(−Mπ|t|) ⇒ pion mass Mπ

⇒ Explicit results for hadron masses, matrix elements, susceptibilities, critical or crossover

temperature e.g. for transition: confinement ↔ de-confinement, decay constants, etc.

REALLY based on QCD

Method also applies to other quantum field theories, like

QED, Higgs model, spin models, condensed matter theories . . .
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• Left: strong coupling αs(q) = g2s (q)/4π at transfer momentum q.

Fit: αs(q) ∝ 1/ ln(q/ΛQCD) (ΛQCD ≈ 300MeV ≪ vHiggs = 246GeV)

• Right: potential between static quarks;

numerical results confirm confinement. (0.2 fm ≃ (1 GeV)−1)

With dynamical quarks more involved: “string breaking” . . .

12



0

0.5

1

1.5

mh [GeV]

π

K

ρ

K
*

φ

N

Λ

Ξ
Σ ∆

Σ∗

Ξ∗

Ω
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Hadron Masses :

Status in 2002, CP-PACS Collaboration, “quenched” simulations

(generate confs with detM = 1, corresponds to Nf = 0, or mquark → ∞)

Simulation much faster, but uncontrolled systematic error (no sea quarks).

Compared to experiment: agreement up to O(10)%

Moreover: 20th century: Mπ>∼ 600MeV, required risky “chiral extrapolation”.
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Dynamical quarks (detM included), e.g. Budapest-Marseille-Wuppertal Collab. (2008)
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Now Mπ down to ≈ 190MeV. System size L ≃ 4/mπ i.e. up to 4 fm : finite size effects mild.
Continuum extrapolation based on lattice spacings a = 0.125 fm, 0.085 fm, 0.065 fm.

Above: evaluation from exp. decay, and chiral extrapolation Mπ → 135MeV. Below: hadron spectrum,

in particular MNucleon = 936(25)(22)MeV vs. 939MeV in Nature (statistical) (systematic) error.
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Alternative Approach by QCDSF Collaboration

W.B., V. Bornyakov, N. Cundy, M. Göckeler, R. Horsley, A. Kennedy, W. Lockhart, Y. Nakamura, H. Perlt,

D. Pleiter, P. Rakow, A. Schäfer, G. Schierholz, A. Schiller, T. Streuer, H. Stüben, F. Winter, J. Zanotti,

since 2011

Traditional treatment of 2 + 1 flavours:

1. Get kaon mass MK (resp. renormalised s-quark mass) ≈ right

2. Push for lighter pions, keeping MK ≈ const.

New Strategy:

1. Start from a SU(3)flavour symmetric point: mR
u = mR

d = mR
s , Mπ = MK

2. Approach physical point with mR
s −mR

l splitting while keeping

X2
π := 1

3(M
2
π + 2M2

K) ≈ const. (centre of mass2 in meson octet)

Mπ down, MK up; extrapolation guided by Chiral Perturbation Theory
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Fan Plots for Meson Spectrum [V = 243 × 48 and 323 × 64, a = 0.0765(15) fm]
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Fan Plots for Baryon Octet (spin-1/2) and Decuplet (spin-3/2)
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Results for the Hadron Spectrum
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Phenomenology vs. (extrapolated) numerical results

Input: Mπ, MK and scale based on flavor symmetric point of the multiplet.

World data: FLAG Review 2019, Flavour Lattice Averaging Group, arXiv:1902.08191 [hep-lat]
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Overview by A. Kronfeld, ’12

Compilation of results by the collaborations MILC (USA), PACS-CS (Japan), BMW

(Germany/Ungary/France), QCDSF (Germany/UK/Russia/Japan/Australia/Mexico),

RBC (USA/Irland), UKQCD (UK), HPQCD (USA), Mohler and Woloshyn (Canada)

20



Status of Lattice QCD

• For the light hadron spectrum, low energy QCD is now tested from 1st principles and

confirmed to ≈ 1%. {despite K. Wilson’s pessimism in 1989: will take forever . . . }

⋆ Sub-% level: QED effects; mu, md splitting → Mn −Mp (Borsanyi et al. ’15)

• Outstanding challenges: e.g. precision data for excited states (Roper resonance!).

Generally: Step from post-dictions to pre-dictions

⋆ MBc predicted by HPQCD (2005): 6.82(8)GeV; CDF (2006): 6.78(7)GeV.

⋆ FDs Puzzle: 2008: Lattice 241(3)MeV vs. CLEO, Belle: 270(8)MeV.

2010: Lattice (MILC) 253(8)MeV vs. CLEO-c, Belle: 261(7)MeV.

( B+
c ∼ (cb̄), D+

s ∼ (cs̄) )

• Everything looks smooth, but conceptual worry expressed by Lüscher ’10:

At tiny a<∼ 0.05 fm the Markov chains of most algorithms — such as Hybrid Monte

Carlo — get stuck in one topological sector; not ergodic, wrong results . . .

Remedy: open boundary conditions (Lüscher), or summation of fixed topology results
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• Topological sectors for configurations in Quantum Field Theory

in volume V with periodic boundary conditions (torus), or V = ∞ and S finite

Examples:

• O(N) models in d = N − 1 dimensions, spin ~e(x) ∈ SN−1

• 2d CI P(N − 1) models, ~c(x) ∈ CI N, |~c(x)| = 1, N = 2, 3, 4, . . .

• Gauge theories (may include fermions):

2d U(1) : Q =
1

2π

∫

d
2
x ǫµνFµν ∈ Z

4d SU(N ≥ 2) : Q =
1

32π2
Tr

∫

d4xFµνF̃µν ∈ Z (F̃µν = ǫµνρσFρσ)

Confs can be continuously deformed only within a fixed top. sector.

Functional integral splits into separate integrals for each Q ∈ Z.

Lattice: for usual actions, no strict separation, but “potential walls” between top. sectors
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Monte Carlo Simulation

Almost all applicable algorithms to generate confs perform a sequence of
small update steps, until a new (quasi-)independent conf. emerges,

[Φ] → [Φ′] → [Φ′′] → [Φ′′′] → . . .

In particular: Hybrid Monte Carlo algorithm for QCD with dynamical quarks.

(Uncontrolled) large jumps tend to drastically increase S, rejected

Problem: small updates rarely change the top. sector

Sequence has to pass through stat. suppressed regime (“potential walls”)

between top. sectors, hight
a→0
︷︸︸︷−→ ∞
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• Striking for QCD with chiral quarks

E.g. JLQCD ’07; Wuppertal Collab. ’15 :

HMC trajectory permanently confined in Q = 0

• Non-chiral lattice quarks (e.g. Wilson fermions): problem less severe so far, i.e. for

0.05 fm . a . 0.15 fm. But: will show up on even finer lattices; continuum-like.

⇒ Monte Carlo history tends to be trapped for a very long (computing)
time, huge number of update steps in one top. sector.

Extremely long topological autocorrelation time.

So how can we measure n-point functions, or the top. susceptibility

χt = (〈Q2〉 − 〈Q〉2)/V ?

By default, we should all sectors, with suitable statistical weight. . .
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Lack of topological transitions in presence of dynamical quarks:

• Lüscher ’10, Lüscher/Schaefer ’11 :

suggest open boundary conditions in t-direction → Q ∈ RI changes gradually.

Avoids top. freezing, but breaks (discrete) time translation invariance, and Q ∈ ZZ is

useful e.g. to check predictions in the ǫ-regime and extract Low Energy Constants

• Here: approach with periodic b.c. → maintains Q ∈ Z

Studies in toy models for QCD:

• 2d O(3) non-linear σ-model (Heisenberg model)

with cluster algorithm (Wolff ’89): non-local updates

• 4d SU(2) YM theory

with heatbath algorithm (considers all options for local updates)
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Summation Formula for Observables

Goal: compute an observable 〈Ω〉, only with input of some measurements 〈Ω〉|Q|
at fixed |Q|, in several volumes.

Brower/Chandrasekharan/Negele/Wiese (BCNW) ’03

expansion in vacuum angle θ, S[Φ] = S0[Φ] + iθQ[Φ] →
Approximation formula for pion mass in QCD. Generalisation:

〈Ω〉|Q| ≈ 〈Ω〉 + c

V χt

(

1 − Q2

V χt

)

Measure left-hand side for several |Q| and V , 3-parameter fit ⇒ 〈Ω〉, χt, (c)

Assumptions:

large 〈Q2〉 := V χt , small |Q|/〈Q2〉 ⇒ work at small |Q|

26



2d O(3) model, L× L lattices, L = 16 . . . 128, ξ ≃ 3.6

Magnetic susceptibility χm = 〈 ~M2〉/V ( ~M =
∑

x ~ex , 〈 ~M〉 = ~0 )
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χt 0.00262(17) 0.00256(16) 0.00259(14) 0.002790(5)

Bautista/W.B./Gerber/Hofmann/Mej́ıa-D́ıaz/Prado ’14
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4d SU(2) Yang-Mills gauge theory

Identify Q by “cooling” on a 164 lattice (a ≃ 0.076 fm)

measure static “quark–anti-quark potential” Vqq̄(R) over distances R/a = 2 . . . 6

Values for Vqq̄(r) à la BCNW, and reproduce accurately the potential from all sectors.

However: results for χt plagued by large uncertainties.
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Summary

For local update algorithms, Monte Carlo histories can be trapped in one top. sector over

a long (simulation) time.

Very large volume overcomes this problem (〈Ω〉Q ≡ 〈Ω〉, the same ∀Q),

but in general — e.g. in QCD simulations — not accessible.

Can we obtain physical results despite top. restriction ?

Top. summation works for observables, in suitable regime also for χt.

Conditions: 〈Q2〉 & 1.5, |Q| ≤ 2

Prospects for application to QCD; typically 〈Q2〉 = O(10).
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Measuring the top. susceptibility

W.B., K. Cichy, P. de Forcrand, A. Dromard, U. Gerber, H. Mej́ıa-D́ıaz, I.O. Sandoval

JHEP 12(2015)070, EPJ Web Conf. 175 (2018) 11024, Phys. Rev. D 98 (2018) 114501

Continuum (lattice) : continuous deformations of a conf. (at finite action)
can never (only painfully) alter Q.

Top. susceptibility

χt =
1

V

(

〈Q2〉 − 〈Q〉2
)

, here : 〈Q〉 = 0 (P invariance)

Non-trivial sectors are exp. suppressed ⇒ pert. theory “topology blind”

Non-perturbative quantity ⇒ issue for lattice simulations
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• Quantitative solution to the U(1) problem [Witten, Veneziano ’79]

Re-scale strong coupling as g2 = g2sNc, large Nc , small gs [’t Hooft]

• Nf massless quark flavours

M2
η′ ∝ 1/Nc (NGB at Nc → ∞, SSB of U(Nf)L × U(Nf)R )

1/Nc-correction ⇒ χquenched
t ≃

F 2
πM

2
η′

2Nf
no U(1) SSB at finite Nc

• For mu = md = 0, ms > 0 :

χquenched
t ≃ F 2

π

6

(

M2
η′ +M2

η − 2M2
K

)

• QCD with dynamical quarks plus axion: χt ≃ F 2
axionM

2
axion

Dark Matter candidate ? [Lattice studies: Petreczky et al. ’16, Borsanyi et al. ’16 . . . ]
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Example for a direct measurement of 〈Q2〉 in quenched QCD [W.B./Shcheredin ’06]

Q := index of Dchiral (V = 123 × 24, β = 5.85 ⇒ a ≃ 0.123 fm)
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Compatible with Witten-Veneziano formula at Mη′ = 958MeV

High statistics and cont. extrapolation: Del Debbio et al. ’05, Dürr et al. ’07 . . .
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Fine lattices: top. sectors separated by high potential walls

Markov chain with small updates: confined to one sector over a LONG computation time.

QCD: autocorrelation time with respect to Q at least ∝ a−10

lattice spacing a<∼ 0.05 fm intractable (?) [Schaefer/Sommer/Virotta ’11]

Main source of systematic errors: further suppression not straightforward

Can we still measure χt ? Yes, by indirect methods !

• BCNW formula:

Works quite well to determine 〈O〉 from 〈O〉||Q|, but large uncertainties for χt

• Aoki-Fukaya-Hashimoto-Onogi (AFHO) ’07: formula exclusively for χt

〈q0 qx〉||Q|, large |x| ≈ −χt

V
+
Q2

V 2

qx: top. charge density, plateau value of correlation ⇒ χt

Successful in some regime, similar to BCNW (small |Q|, 〈Q2〉>∼ 1.5);

large V → tiny signal, to be extracted by all-to-all correlations [Bautista et al., ’15]
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Slab Method [ W.B./de Forcrand/Gerber ’15 ]

Assume Gaussian distribution of top. charges,

p(Q) ∝ e−Q
2/(2χtV )

usually well approximated.

Split volume V into sub-volumes := slabs of sizes xV , (1 − x)V (0 < x < 1)

Q − q

V Q

(1−x) Vx V

q

Total chargeQ ⇒ slab charges
∑

y qy : q, Q−q ∈ RI (face between slabs non-periodic)
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Probability distribution (at fixed V , x, Q):

p1(q) p2(Q− q) ∝ exp
(

− q2

2χtV x

)

· exp
(

− (Q− q)2

2χtV (1 − x)

)

∝ exp
(

− 1

2χtV

q′
2

x(1 − x)

)

, q
′
:= q − xQ

〈q〉 = xQ ⇒ 〈q′ 2〉 = 〈q 2〉 − x2Q2

Measure 〈q 2〉 ⇒ 〈q′ 2〉 at fixed Q, V and varying x (same confs)

fit to parabola χtV x(1− x) ⇒ χt
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The 2d O(3) Model (Heisenberg model)

Popular in solid state physics: model for ferromagnets. Particle physics:

toy model for QCD: asymptotically free, dyn. generated mass gap, top. sectors

Continuum ~e(x) ∈ S2 (periodic boundary conditions)

S[~e ] =
β

2

∫

d
2
x ∂µ~e · ∂µ~e , Q[~e ] =

1

8π

∫

d
2
x ǫµν ~e · (∂µ~e× ∂ν~e) ∈ Z

Lattice actions ~ex ∈ S2 i.e. |~ex| = 1 ∀x, lattice units: a = 1, |µ̂| = 1

Standard S[~e ] =
β

2

∑

x,µ

(~ex+µ̂ − ~ex)
2
= β

∑

x,µ

(1 − ~ex · ~ex+µ̂)

Manton S[~e ] =
β

2

∑

x,µ

arccos
2
(~ex · ~ex+µ̂)

Constraint S[~e ] =
∑

x,µ

s(~ex, ~ex+µ̂), s(~ex, ~ex+µ̂) =

{
0 ~ex · ~ex+µ̂ > cos δ

+∞ otherwise
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Lattice: Geometric def. of Q Triangle decomposition of each plaquette, 〈xyz〉

A
e

ex

ey

z
xyz

S2

Axyz : (minimal) oriented solid angle spanned by ~ex, ~ey, ~ez

Q[~e ] =
1

4π

∑

〈x,y,z〉
Axyz

Periodic b.c.: sum covers S2 just Q ∈ Z times
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Geometric formulation of Q, three lattice actions
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Each quadruplet of points shows (from left to right): χt directly measured

(feasible with cluster algorithm), and with slab method at |Q| = 0, 1, 2
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Kurtosis

c4 =
1

V

(

3〈Q2〉2 − 〈Q4〉
)

= − 1

V
〈Q4〉connected

measures deviation from a Gauss distribution (Gaussian: c4 = 0)
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Cont. limit ξ → ∞ : c4/χt ≈ −1 (stable in V ) Value of a dilute instanton gas !

• 4d SU(3) YM theory: c4/χt ≈ −0.26

[Panagopoulos/Vicari ’11, Cè et al. ’15, Bonati/D’Elia/Scapellato ’16]
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2-Flavour QCD

• Wilson gauge action, qx from lattice discretised FµνF̃µν

after smoothing,
∑

x qx is rounded to Q ∈ Z

• Twisted mass quarks, Mπ ≃ 650MeV

• 20 000 confs, V = 163 × 32, β = 3.9 ⇒ a ≃ 0.079 fm

Gradient flow: smoothing of the confs,

corresponds to RG transformation [Lüscher ’10]

Lüscher’s reference scale 〈E〉 t20 = 0.3 , here: t0/a
2 = 2.42

Slabs: 163 × 32x and 163 × 32(1 − x)
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〈q′ 2〉(x) for |Q| = 0, 1, 2 at t = 5t0

x & 0 and x . 1: thin slabs involved, do not follow parabola

For 0.2 . x . 0.8 matches well (joint) fit to:

〈q′ 2〉(x) = χtV x(1 − x) + const
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Perfect agreement with other methods:

χt a
4
=






7.76(20) · 10−5 direct

7.63(14) · 10−5 slab method for |Q| ≤ 2

7.69(22) · 10−5 AFHO method for |Q| ≤ 2
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Data for 〈q0 qt〉||Q| ≃ −χt
V + Q2

V 2 at flow time 6t0
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Left: 〈q′ 2〉(x) in the sector |Q| = 1, at t = t0 . . . 5t0

Long flow time: reduces stat. errors, enhances deviations at extreme x

Right: χt a
4 · 105 ≃ 7.7(2) is stable under Gradient Flow

Subtractive constant ∝
√
t (like diffusion range)
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Conclusions about the Slab Method

Simple approach to measure χt within a fixed top. sector, hardly any computational cost

Only assumption: Gauss-distribution of top. charges (works well)

[Generalisation to p(Q) ∝ exp(−a1Q2 − a2Q
4) is feasible, determines also c4]

Precision best for small |Q|, not affected by “topological slowing down”,

but persistent finite-size effects (polynomial at fixed topology)

Successful tests in

• non-linear σ-models: straight application

1d O(2) model: h-level precision, 2d O(3): %-level

• 2-flavour QCD: %-level, stable within gradient flow time t0 . . . 8t0

45



Outlook: Millennium problem: QCD phase diagram at high baryon density

Tcrossover ≈ 155MeV, but finite density needs chemical potential ⇒ Euclidean QCD

action ∈ CI , p[U ] = 1
Z exp(−SQCD[U ]) /∈ RI , not a probability

straight Monte Carlo fails (re-weighting requires statistics ∝ exp(c V ), “sign problem”)

Possible solution: (analog) quantum computing, complex phase is included.

Proposal for 2d CI P(2) model (topology, asympt. freedom, dyn. mass gap ∼ QCD):

ultra-cold (nK) Alkaline Earth Atoms trapped in optical lattice: nuclear spin as SU(3) field,

SSB SU(3) → U(2), low energy action for Nambu-Goldstone bosons
!
= CI P(2) model

Laflamme/Evans/Dalmonte/Gerber/Mej́ıa-D́ıaz/W.B./Wiese/Zoller ’16; to be implemented in Trieste
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