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Neutrinos

• Neutrinos are everywhere 

• The universe is filled with neutrinos 

• Apart from photons, there are more 
neutrinos than any other particle 

• Neutrinos only feel the weak force   

• Example: To stop 1 MeV particle  

• For an electron require 10mm of 
lead  (Electromagnetic 
interaction) 

• For a proton require 0.1 mm of 
lead (strong interaction)  

• For a neutrino we need 10 light 
years  of lead (weak interaction)

Info: 1eV ~1.6X 10^-19J ~2X10^-36 Kg



Neutrino Sources
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• Many neutrino sources and 
energies, interacting via 
weak force 

• Focus: Two interesting 
sources 

• Reactors: 1-10 MeV  

• Accelerators: 0.1 - 10 
GeV (See talk from 
Deywis) 
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Neutrino Sources: Accelerators
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‘Crazy Fast’

‘Ridiculously Crazy Fast’

‘Fast’‘Really Fast’

200 MeV8 GeV
120 GeV

1 TeV

Start here.

• Fermilab: Example of Proton Beam 
• Accelerate protons (hydrogen nuclei) from 0 to 99.999% the speed of 

light in four steps
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Neutrino Sources: Accelerators

‘Crazy Fast’

‘Ridiculously Crazy Fast’

Discovered this guy 
right over here!

‘Fast’‘Really Fast’

200 MeV8 GeV
120 GeV

1 TeV

Start here.

• Fermilab: Example of Proton Beam 
• Accelerate protons (hydrogen nuclei) from 0 to 99.999% the speed of 

light in four steps
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Neutrino Sources: Accelerators

 8

Booster Neutrino Beam

NuMI Neutrino Beam

8 GeV
120 GeV

• Fermilab: Example of Proton Beam 
• Accelerate protons (hydrogen nuclei) from 0 to 99.999% the speed of 

light in four steps 

• Use proton beams to make beams muon-type neutrinos



David Martinez Caicedo - SDSMT

Neutrino Sources: Accelerators

energetic protons  
delivered 

by the accelerator

impinge upon a  
fixed target

creates short-
lived 
charged particles

quickly decay 
into neutrinos 

which are focused 
forward by a strong 
magnetic field

νµ

νµ

νµ

νµ

νµ

νµ

We can use an intense beam of 
protons to create an intense beam of 

neutrinos

Fermilab

νµ

νµ
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Neutrino Sources: Accelerators
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Booster Neutrino Energy Spectrum NuMI Neutrino Energy Spectrum

~0.5 - 10 GeV Neutrino Energies



Neutrino Sources: Reactors 
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• Reactor νe : produced in decay  of product 
beta branches 

• More than 99 % of νe are the fission products 

of 235U, 239Pu, 241Pu, 238U. 

•                 fission/second per GWth (~6 νe per 
fission)

HFIR Core
2⇥ 1020
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Neutrino Sources: Reactors
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• Beta branches produced when fission isotopes fission  

• Low enriched (LEU): Many fission isotopes 

• High enriched (HEU): U-235 fission only 

• Overall fission rate described largely by reactor thermal power 
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Neutrinos:
Oscillations

• Neutrino oscillations occur because the flavor 
(weak) eigenstates do not coincide with the mass 
eigenstates.  

• The neutrinos interacts as a flavor state, but 
propagate as a superposition of the three mass 
states  

• Over a distance L, changes in the relative phases 
of the mass states (1,2,3) may induce neutrino 
flavor change.
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Neutrinos:
Oscillations

• In the two flavor case the mixing and survival probability are 
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• In this case, oscillations are described by one mixing angle           
and one mass squared difference (mass splitting) 

• The neutrino energy E and propagation length L are 
experimental parameters 

• For the 3 flavor case, we have the 3X3 PMNS  mixing matrix:

• Measured by atmospheric and accelerator experiments (\theta_23 ~ 45)

• Measured by reactors and accelerators experiments (\theta_13 ~ 9)

• Measured by solar experiment (\theta_12 ~ 34 )

✓
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Neutrinos:
Oscillations

Begin with mono-
energetic να

Many detectors and 
measure the content 

να / νβ  

Message: 

Nice idea but $$$ 

Fixed 
energy E 
 Variable 

L

�15
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Begin with 
broad energy 

spectrum beam of  
να

L
Measure να / νβ 

energy spectrum at 
origin and again 
after traveling a 

distance L

Fixed L 
Energy 

variable E

Neutrinos:
Oscillations
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Reactor Neutrino 
Experiments: 

Daya Bay 
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Daya Bay Experiment

• Info about what experiment is / how it works

•

9/3/13! Spectral Measurement of Antineutrino Oscillation at Daya Bay! 5!

A Powerful Neutrino Source at an Ideal Location�

Mountains shield detectors!
from cosmic ray background�

Ling Ao II NPP!
2 ×2.9 GWth�

Daya Bay NPP!
2 2.9 GWth�

Ling Ao I 
NPP!
2 ×2.9 GWth�

Entrance to Daya Bay!
experiment tunnels�

x

x

X



David Martinez Caicedo - SDSMT

Daya Bay Layout
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• Original concept with  
8 ‘identical’ detectors: 
• Near detectors  

constrain flux. 
• Far detectors see if  

any neutrinos have  
disappeared.  

• Daya Bay has ideal  
features for doing this!

! ! ! !Reactor![GWth] !Target![tons] ! !Depth![m.w.e]!
!

Double!Chooz! !!!8.6! ! ! !!!16!(2!×!8) ! !300,!120!(far,!near)!
RENO ! ! !16.5! ! ! !!!32!(2!×!16) ! !450,!120!
Daya!Bay! ! !17.4! ! ! !160!(8!×!20) ! !860,!250!!

Large Signal! Low Background!



David Martinez Caicedo - SDSMT

Daya Bay Motivation
• Daya Bay was designed to measure  

• Measurement of      required: 

• High statistics 

• Suppression/Understanding of 
backgrounds 

• Clear understanding of major 
source of systematics  

• Construct detectors as similar 
as possible  

• Relative near/far 
measurements

 20

θ13

θ13
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The Daya Bay antineutrino detector

• Detect inverse beta decay (IBD) with liquid scintillator. 

• Coincidence of the prompt scintillation from the 
positron and the delayed neutron capture on 
Gadolinium provides a distinctive νe  signature. 

• IBD positron is direct proxy for antineutrino energy

 21

0.1% Gd
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The Daya Bay antineutrino detector
3 calibration units per 

detector.
3 sources per unit:

Ge68 (1.02 MeV)
Co60 (2.5 MeV)

Am241-C13(8 MeV)

 22
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Backgrounds
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• Backgrounds make up <2% of  
Near Site IBD candidates 

• Primary background: accidentally  
coincident triggers 
• 1.3% of near-site signal;  
• Other backgrounds ~0.5%.

Daya Bay, PRD 95 (2017)

Daya Bay, PRD 95 (2017)
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IBD candidate rates
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• ~ 400-800 IBDs in each near site antineutrino detector per day (x4 ADs) 
• Can see when reactors are turned on and off

Info:
1230-day dataset  
goes to July 2015

Daya Bay, Chin. Phys. C 41(1) (2017)
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 Systematics:Relative Detection 
Efficiency  

• Relative energy scale uncertainty and relative detection efficiency  uncertainty are 
the dominant systematics for         and  

• Achieved a relative detection efficiency uncertainty of 0.13%

 25

Relative Gd capture fraction  
uncertainty < 0.10%

Relative energy scale  
uncertainty <0.2% 

Δm2
ee sin22θ13
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• Uncertainty on neutron detection 
efficiency was reduced 56%

• New neutron calibration data 
(Calibration campaign late 2016/
early 207) 

• Deployed two neutron sources (.                 
and                  along 3 vertical 
calibration axis) 

• Confirmed reactor flux anomaly: ~5% 
deficit in Data/Prediction  (Huber-
Mueller) 

• Data/Prediction is consistent with 
previous short baseline experiments

 26

Systematics: Neutron Detection Efficiency

241Am −13 C
241Am −9 Be • Phys. Rev. D 100, 052004 (2019)
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Dataset: 1958 days of data sample 

• > 3.9 M of antineutrino interactions  

• Statical error in antineutrino rates 

• ~0.11% in EH1, EH2 

• ~0.29% in EH3 

• Background uncertainty antineutrino rates ~0.12% (all antineutrino detectors) 

 27

Phys. Rev. Lett. 121, 
241805
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Daya Bay: Oscillation Results with 1958 Days 
•                uncertainty is 3.4% and            uncertainty is 2.8% 

• Statistical uncertainty contributes 60% for                 and 50% for   

• Results were cross-checked with different independent analysis

 28

sin22θ13 Δm2
ee

sin22θ13 Δm2
ee

Phys. Rev. Lett. 121, 
241805
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Reactor Fuel evolution 
measurements 

1230 days of data 

 29
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Daya Bay: Fuel evolution analysis

• DO NOT time integrate: instead,  
look at reactors’ fission fractions 

• % of fissions from 235U 239Pu, 238U, 241Pu 

• Calculate ‘effective fission fraction’  
observed by each detector: 

•  

 30

Weight for each of the 6 
reactor cores 

Basically weight’s each reactor’s fission  
fraction by distance, power, and oscillation

D
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7)Simulation of a complete refueling cycle 
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• We have fission fractions 
and IBDs versus time 

• Let’s compare IBDs 
from periods of 
differing effective 
fission fractions! 

• Doing this by combining 
periods of common  
fission fraction. 

• We choose 8 bins 
in 239 Pu effective  
fission fraction, F239

 31

Daya Bay: Fuel evolution 
analysis
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From IBD/day to IBD/fission     

• IBD/day depends on many time-
dependent quantities: 

• Reactor status and thermal power 

• Power released per fission 

• Detector livetime 

• Show final results in terms of IBD/
fission 

• Basically take IBD/day and divide 
out all these variable quantities on a 
week-by-week basis

 32

�f

Fi :Effective fission fraction for 
 each isotope 

IBD yield  from 
 each isotope 

�i :
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Results: Flux Evolution

• When plotting IBD/fission versus 
F239, we see a slope in data

• Very clear that flux is changing with 
changing fission fraction. 

• Not too surprising; models predict 
239Pu makes fewer νe 

• Seen before in previous 
experiments: Rovno (90’s); 
SONGS (00’s)

 33

ROVNO

SONGS
J. Appl. Phys. 105 064902

Atomic Energy Vol 76 No 2 (1994)

Daya Bay
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Result: Flux evolution

• Measured slope is different than model prediction by 3.1 σ
• Could mean a couple things: 

• 239Pu prediction is too low 
• 235U prediction is too high 
• Something is WAY off with 238U, 241Pu

 34Isotope
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• Could mean a couple things: 
• 239Pu prediction is too low 
• 235U prediction is too high 
• Something is WAY off with 238U, 241Pu

 35Isotope
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6.0

239Pu
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True Fluxes

235U
DOWN

Result: Flux evolution

Blue line is actually  
way up here! scaled to  

account for the difference 
in total yield between data 

and prediction

Mostly 235U 

Mostly 239Pu 
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• More complicated scenarios still allowed: 239Pu UP + sterile neutrino. 

• Giunti et al. JHEP10(2017)143

• Whatever the case reactor flux models must be wrong in some way. 
• To truly rule out sterile neutrinos, direct tests of L/E with SBL reactor 

experiments are required.

Results: Flux Evolution
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Result: Fitting For Individual Isotopes

• Use this data to explicitly fit IBD/
fission for 235U, 239Pu 

• Assume loose (10%) uncertainties 
on sub-dominant 238U, 241Pu 

• Dominant uncertainties: 

• Statistics 

• IBD absolute detection efficiency 

• The explanation of 235U only being 
wrong fits the data well. 

• 239Pu also matches model well. 

• Future Highly Enriched Uranium 
(HEU) and  Daya Bay measurements  
will be necessary for improvements.

 37

✔?

✗?

Results suggests that  235U  being the main contributor of 
the Reactor Antineutrino Anomaly. 

 PRL. 118, 251801
Editor’s Suggestions 

and Physics Viewpoint
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What about reactor flux predictions?
• Theorists have come with multiple reasons why predictions could be 

not so good… 

• Could be one isotope, or could be all isotopes, or a mixture … 

• Deficit could be fuel - content dependent 

• What about compare flux measurements between different reactor 
types? Compare between different time periods in one experiment :)

 38

Daya Bay’s 
observed 

Range 
over time
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Other Reactor Neutrino Experiments 
RENO, PROSPECT, STEREO, DANNS

 39
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RENO 

• Six 2.8 GWth reactors 

• 850666 electron neutrino candidates  

• 1807 live days 

• Results from: Phys. Rev. Lett. 122, 232501 
(2019)  

 40

Neutrino Seminar Fermilab, Soo-Bong Kim, Sep 2018
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Fuel evolution analysis
Phys. Rev. Lett. 122, 232501 (2019)  

 41
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PROSPECT Experimental Layout
• HEU Reactor: HFIR 85 MW 

• Segmented liquid scintillator  
target region: ~4 tons for 
near detector (Phase I) 

• 154 segments, 119 cm X 15 cm X 15 cm 

• Moveable: 7-12 m baselines 

• Measure 235U spectrum while directly  
probing sterile oscillations independent of reactor 
models

�42

Sub-cell conceptual design

HFIR core shape and 
relative size comparison

Near detector conceptual design

PMT
Light Guide
Separator
LiLS

PROSPECT deployment at HFIR

Phase II:  
far detector

moveable Phase I
near detector
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PROSPECT Experimental Layout
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• 33 days of reactor on 

• 28 days of reactor off 

• ~24000 IBDs (750/day) 

• Compare spectra from 
different baselines to 
measured full detector 
spectrum  

• Null-oscillation will give a flat 
ratio for all baselines

 44

PROSPECT: Results

Baseline dependent
oscillation illustration

Phys. Rev. Lett. 121, 251802
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• Covariance matrices 
captures all uncertainties and 
energy/baseline correlations 

• 95% exclusion curve based 
on 33 days of data  

• First oscillation analysis on 
data disfavor the Reactor 
Antineutrino Anomaly (RAA) 
best fit at 2.2 sigma! 

• No evidence of steriles so far

 45

PROSPECT: Results

Phys. Rev. Lett. 121, 251802
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STEREO
• Research reactor core 58 MWth (ILL, Grenoble, 

France) 

• Highly Enriched Uranium (U235 ~93%) 

• Short baseline measurement 

• 9.4 < Distance to core < 11.2 m  

• Interesting to see (near future) comparisons with 
PROSPECT, global fluxes and other theta13 
experiments 

 46

Reencontres de Moriond, 2019



David Martinez Caicedo - SDSMT

DANNS

• Compare spectra between 
the same detector deployed 
at two different baselines 
(10.7 m and 12.7 m) 

• Commercial reactor -> 
5000 IBD events per day 

• Have presented relative 
spectra between 
locations 

 47
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Reactor Spectrum Anomaly 
• Reactor spectrum predictions do not match the LEU data  

• Bump in the 4-6 MeV range 

• Spectrum is incorrectly predicted? 

• Is one particular isotope? Could be a combination? or all the isotopes? 

• Short baseline measurements at U235 cores could give us new input :)

 48
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• PROSPECT: Measured spectrum at 
U235 HFIR reactor 

• Comparing PROSPECT spectrum 
measurement with Huber’s U235 model  

• X^2/ndf = 51.4/31 

• Huber broadly agrees with 
PROSPECT data ( but not the best 
fit)  

• High energy bins -> Stats, 
background issue?

 49

Reactor Spectrum Anomaly 
Phys. Rev. Lett. 122, 251801  (2019)
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• Measured Daya Bay spectrum 
variation with fuel content  

• Extract U235 and Pu239 spectrum 

• Option: Both isotopes have 
bump with respect to prediction  

•  0.8 sigma better than the 
‘U235 only’ case.  

• Result is consistent with 
PROSPECT   

• Active efforts pursuing future 
joint LEU-HEU analysis

 50

Reactor Spectrum Anomaly 

Phys. Rev. Lett. 123, 111801 (2019)
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Summary

 51

• Reactor neutrino experiments will continue providing crucial input to precisely 
test the sterile neutrino hypothesis! 

• Need to continue working on the reactor spectrum and flux anomaly 

• Increase stats, compare multiple reactor neutrino experiments, joint efforts 
for combined analysis (LEU+HEU) 

• Nice research opportunities within the long baseline and short baseline 
neutrino experiments in the coming decade! 
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Gracias!

Thanks!
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BACKUP

 53
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Results: Spectrum Evolution

• What if we add IBD energy into the mix? 

• Examine evolution in 4 separate 
energy ranges 

• Slope is different  
for different energy 
ranges. 

• Put another way: IBD 
spectrum is changing 
with F239  

 54

• This is the first 
unambiguous measurement 
of this behavior

• Highly relevant to      based 
nuclear non-proliferation

⌫e
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Important:  An experimental 
demonstration of reactor 
monitoring

• Theory-based case-studies of Iranian, North 
Korean nuclear reactors: P. Huber et al 
arXiv[1403.7065],  arXiv[1312.1959] 

• Unambiguous monitoring of reactor’s 239Pu 
content utilizing a reactor’s antineutrino spectrum  

• Daya Bay spectrum evolution result validate 
these theoretical studies.  Looks like this should 
be possible :) 

 55

P.Huber et al, Phys. Rev. Lett. 113, 042503

Results: Spectrum Evolution
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• How does PROSPECT compares to 
bump in other reactor neutrino 
experiments? 

• PROSPECT relative bump size with 
respect to Daya Bay 69% +/- 53% 

• Consistent with no bump (0%) and 
Daya Bay sized bump (100%) 

• Big bump (178%) if U235 is the 
sole bump contributor 

• Disfavored at 2.1 sigma

 56

Reactor Spectrum Anomaly 
Phys. Rev. Lett. 122, 251801  (2019)
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• Accidental coincidence between prompt and delayed signals ~1% 

• During detector operation it was found that neutrons from the 241 Am-13 C 
calibration sources within the ACUs occasionally introduced several γ rays, 
correlated in time, to the detector. Contamination from this background was 
estimated to be  ≲0.1% 

• Fast neutrons: Muon interactions in the environment near the detector 
generated energetic, or fast neutrons <0.1% 

• 9Li/8He b-n followers produced by cosmic muon spallation. 0.3-0.4%

 57

Backgrounds
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Systematics: Detector

• How does a detector 
change over time? 

• Reconstructed energy 
scales are extremely 
time-stable (<0.1% 
variation) 

• Most inefficient IBD 
cuts are energy-based: 
also time-stable 
(<0.1% variation) 

• IBD Absolute detection 
efficiency uncertainty: 
1.9%

 58

nH Capture

Daya Bay, PRD 95 (2017)
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Experimental Anomalies

 59
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Experimental anomalies: LSND
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LSND used neutrinos from stopped pions to search for  
neutrino oscillations with Δm2 ~ 1eV2.  

For two-state mixing: 

The detector was 30 m from the source and <Eν>~ 30 MeV. 

800 MeV proton beam produces π+ that produce neutrinos

Searched for                        

via Inverse 
Beta Decay (IBD)  
      

• LSND (at 30 m) observed an excess of  87.9+/-22.4+/-6.0 events 
(3.8 sigma) 

LSND anomaly
PRD 64 (2001) 112007 
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• Similar L/E as LSND 

• MiniBooNE ~500 m / 500 MeV 

• LSND ~30m/ 30 MeV 

• Different systematics i.e.  different flux, event signatures, backgrounds 

• 800 ton mineral oil Cherenkov detector 

• Horn polarity determine neutrino or antineutrino mode 

• Great flux monitor for the short baseline neutrino program at Fermilab!

 61

Experimental anomalies: MiniBooNE
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• Cherenkov detector see 
Cherenkov light rings generated 
by charged particles 

• Looking for: 

• Backgrounds come from small 
intrinsic electron neutrino rate in 
the beam and any muon 
neutrino interactions that leave  
a single reconstructed photon in 
the final state 

• Cherenkov detector can not 
distinguish electron from single 
gamma 

Experimental anomalies: MiniBooNE

⌫µ ! ⌫e

⌫̄µ ! ⌫̄e
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Experimental anomalies: MiniBooNE

 63

 Designed to test LSND , same L/E, but with <E>~ GeV, L=541 m 

Searched for:

Observed an excess below 500 MeV 
Observed no excess above 500 MeV 
To explain both LSND and MiniBooNe by 
oscillations possibly suggest a fourth sterile 
neutrino requiring a mass on the 1eV2 scale

3.4 sigma excess!

2.8 sigma excess!

MiniBooNE anomaly
PRL 102 (2009) 101802 
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Experimental anomalies: New MiniBooNE
Results 

arXiv:1805.12028

E. Chuan Huang
Neutrino 2018

Phys. Rev. Lett. 121, 221801 
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Experimental Anomalies: Reactors
• Hints of beyond standard model neutrinos? 

• Deficit of neutrinos at short distances from nuclear reactors  

• Could result from a high frequency (1 m /MeV) oscillation 

• New oscillation experiments could provide compelling experimental proof 
of physics beyond the standard model!

 65

Daya Bay, Chin. Phys. C 41(1) (2017)
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Anomalies in neutrino physics 
at Short Baseline experiments

• Different experiments studying neutrinos on baselines less than 1 km have reported 
anomalies varying in significance 

• Common interpretation: Could be evidence of high mass squared neutrino oscillations 
and the existence of one or more “sterile” neutrino states with masses ~ 1 eV 

• Tons of global fits to the data (both with signal and null results) in literature that fit 
the data to 3+1, 3+2, 3+3 (Conrad et al, Giunti et al, …) 

• All these signals could be hinting at important new physics that requires further 
exploration!

 66

New
MiniBooNE

results
4.8 sigma

(neutrino + antineutrino)



David Martinez Caicedo - SDSMT

Experimental anomalies

• Testing the “sterile neutrino” hypothesis by different fronts: 

• Measuring the reactor neutrino flux evolution at 
Daya Bay

• Testing accelerator νe appearance within Fermilab 
Short Baseline Neutrino (SBN) program

 67
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IBD Selection

 68

• Muon Veto (Cosmogenic 
backgrounds) 

• Apply time coincidence and energy 
cuts.  

•        : time difference between the 
prompt and delayed signals 

• 1 <      < 200 us  �t

�t
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IBD Selection

 69

• Reject PMT Flashers 

• Muon Veto 

• Prompt and delayed energy 
cuts 

• Neutron capture time cut 

After this selection on 1230 days  
of data, we get 2.5 million 

candidates; 
2.2 million from 4 Near Site 

detectors.
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Why neutrinos?

The SNO Experiment The Super-Kamiokande Experiment

A. McDonaldT. Kajita

• 2015 Physics Nobel prize:    
“for the discovery of neutrino  
oscillations, which shows that  
neutrinos have mass” 
• Not the only one either: 2002, 1995, 1988  

• It’s a very exciting time to be  
studying neutrino physics!
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http://particlezoo.net: Go buy one!!!!

Why Neutrinos?
• Learn more about the least-well-known SM particle! 

• How they interact? 

• How much do they weigh? 

• Related: how much to they oscillate? 

• Related: do neutrinos and antineutrinos  
OSCILLATE differently?

http://particlezoo.net
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Oscillation results 
1958 days of data 

 72


