DUNE Status

Universidad Antonio Narino Bogota, Colombia

December 3, 2019

(日)

Content

- Introduction
- Long based Neutrino Experiments
- DUNE Overview
- The DUNE Single Phase Photon Detection System (PDS-SP)

< □ > < □ > < □ > < 三 > < 三 >

- The Contribution of Latin America to the PDS-SP
- Summary

The Standard Model of Particle Physics

- Ordinary matter is made of Fermions.
- Forces are carried by Bosons.
- Higgs Boson was the last piece of the SM to be found.
- Since the year 2012 the SM is completed
- But....

The Standard Model of Particle Physics

- Ordinary matter is made of Fermions.
- Forces are carried by Bosons.
- Higgs Boson was the last piece of the SM to be found.

- Since the year 2012 the SM is completed
- But....

We need physics beyond the Standard Model.

- Dark Matter
- Hierarchy problem
- Neutrinos are massive

For every proton/neutron/electron the Universe contains a billion of ' ' ' neutrinos from the Big Bang

99% of the energy in a supernova explosion is carried away by neutrinos

10³⁸ neutrinos per second are produced by the Sun

(with a flux of ~10 \$cm2/sec at the Earth)

Neutrino Oscillations.

Standard Neutrino Picture

• Neutrinos are massive

•
$$\Delta m^2_{12} \approx 7.53 \times 10^{-5} \, \mathrm{eV}^2$$

•
$$\left| \Delta m_{23(13)}^2 \right| \approx 2.45 \times 10^{-3} \, \mathrm{eV}^2$$

- $\theta_{12} \approx 33^o$
- $\theta_{13} \approx 8.3^{o}$
- $\theta_{23} \approx 46^o$

Standard Neutrino Picture

- $\theta_{13} \approx 8.3^{o}$ Why so small?
- $\theta_{23} \approx 46^o$ Maximal?
- What is the value of δ_{CP} ?
- Absolut neutrino mass?
- What is the mass hierarchy? Sign of Δm_{31}^2 ?
- Dirac or Majorana?

Content

Introduction

Long-Baseline Neutrino Experiments

- DUNE Overview
- The DUNE Single Phase Photon Detection System (PDS-SP)

< □ ト < □ ト < 三 ト < 三 ト</p>

- The Contribution of Latin America to the PDS-SP
- Summary

LBL Recipe

- An intense beam of proton is focused onto a target
- Secondary particles produced from the target are focused by magnetic horns
- The focused particles traverse a long decay region where neutrinos are produced
- A Near detector is needed to measure the initial neutrino Flux
- A Far detector is used to measure the appearance/disappearance of a neutrino flavour

Neutrinos production via Kaon or Pion deca
--

$$\pi^+ \to \mu^+ + \nu_\mu \tag{1}$$

Oscillation Probability:

$$P(\alpha \to \beta) = \sin^2 2\theta_{ij} \sin\left(\frac{1.27\Delta m_{ij}^2(eV)L(Km)}{E_{\nu}(GeV)}\right)$$
(2)

Experiment	Operational	Peak E_{ν}	Baseline
K2K	1999 - 2004	$1{ m GeV}$	$250\mathrm{km}$
NuMI/MINOS	2005 - 2011(?)	$3{ m GeV}$	$735\mathrm{km}$
CNGS/OPERA	2008 -	$17{ m GeV}$	$732\mathrm{km}$
T2K	2010 -	$0.7{ m GeV}$	$295\mathrm{km}$
NOνA	2012(?) -	$1.8\mathrm{GeV}$	$810\mathrm{km}$

15/47

(日)

LBL Beamline

T2K

It uses the J-PARC beam Achieves up to 500 kW POT total: 3.16×10^{21} The beam is $2,5^{\,0}$ off-axis with respect to the far detector.

ΝΟνΑ

It uses the NuMI beam Nominal 700 kW since 2017 POT total: 15.66×10^{20} The beam is 0,84 0 off-axis with respect to the far and near detector.

LBL Beamline

Off-Axis angle

The beam is 2.5 $^{\rm 0}$ off-axis with respect to the far detector in T2K

NOvA

Around 1 % contamination of ν_e Less that 10 % wrong ν_μ component in beam

LBL Detectors

T2K

Two Near detectors: ND280 and INGRID ND280 is composed of trackers, a combination of fine grained detectors and Ar TPCs INGRID: on-axis scintillator light detector Far Detector: Water-Cherenkov detector with 50 kTon of ultra-pure water

$NO\nu A$

Two identical detectors (except for the size) Detectors are made of 344000 cells highly reflective plastic PVC filled with liquid scintillator. Near Detector: $0.3 \,\mathrm{kTon} \, 1 \,\mathrm{Km}$ from source Far Detector: $14 \,\mathrm{kTon}$ Readout made via WLS fibers to avalanche photo diode array

Content

- Introduction
- Long-Baseline Neutrino Experiments
- DUNE Overview
- The DUNE Single Phase Photon Detection System (PDS-SP)
- The Contribution of Latin America to the PDS-SP
- Summary

Deep Underground Neutrino Experiment.

- Measure of ν_e and $\bar{\nu_e}$ appearance and ν_μ and $\bar{\nu_\mu}$ disappearance over a long baseline
- It will use a high-intensity neutrino beam and high-resolution massive detectors.

LBNF: Long-Baseline Neutrino Facility

- Provides Infrastructure for the experiment
- Neutrino Beam
- Detector facilities
- Cryogenic systems

DUNE an International Project

- International Collaboration
- 34 countries
- 192 institutions
- More than 1000 Collaborators

< □ > < 同 > <

DUNE Physics Program

Program Physics with primary goals:

22/47

The LBNF Beamline

- The LBNF neutrino beam will be produced using $60-120\,{\rm GeV}$ protons from Fermilab's main injector
- Initial nominal power of 1.2 MW (10¹⁴ protons-on-target/sec)
- $\bullet\,$ In the future upgradeable to 2.4 ${\rm MW}$
- Can run in neutrino (FHC) and antineutrino (RHC) modes by switching polarity of magnetic horns
- Wideband beam enables use of second maximum and enhances probing BSM phenomena

The DUNE Near Detector

- $\bullet~{\rm ND}$ located 574m downstream of production target
- dedicated to measure flux, cross-section and to constrain detector uncertainties
- System composed of multiple detectors:
 - LArTPC (ArgonCube)
 - Multipurpose detector (MPD)
 - Beam monitor (3D scintillator tracker-spectrometer 3DST-S)

The DUNE Prism

- ArgonCube and MPD are on rail (Off-Axis)
- Up to 30 m side movement
- Allows to measure new flux

DUNE Far Site Facility

Gold mine repurposed into underground laboratory (1.5Km Underground) 5 main caverns: 4 detector caverns and one support cavern (Cryogenics and DAQ)

The DUNE Far Detector

- Liquid Argon Time projection Chambers (LArTPC)
- Two technologies: Single Phase and Dual Phase

Single Phase TPC

Dual Phase TPC

TPC Principle

Single Phase Detector

- $\bullet~10\,\mathrm{kt}$ fiducial cryostat
- Width = $14 \,\mathrm{m}$, Height= $12 \,\mathrm{m}$, Length= $58 \,\mathrm{m}$
- 150 APAs, 200 CPAs
- PD system integrated
- 385000 Readout Channels
- Start of Construction 2022
- First Module ready by 2024
- LBN Beam by 2026

Dual Phase Detector

- Drift distance: 12 m
- E = 500 V/cm
- Cathode voltage: -600 kV
- Photon Readout: PMTs coated with TPB

FNAL.gov < □ → < □ → < □ → < □ → <

30/47

3 × 3

- At CERN there are builded two prototypes.
- ProtoDUNE SP was exposed to a test beam at CERN last autumn.
- Protodune single phase has 420 ton active LAr.
- A small TPC prototype is under operation at Fermilab (ICEBERG)

31/47

• ProtoDUNE SP was completed at end of June 2018

• Filling of the cryostat completed in Sep. 13th 2018

• Data taking since Sep 21st-Nov 11th.

First track recorded the 18th of October 2018.

- Data taking Sep. 21st to Nov. 11th.
- Since Nov. runs with cosmics.

Momentum	Total Triggers	Expected Pi trig.	Expected Proton trig.	Expected Electr. trig.	Expected Kaon trig
0.3 GeV/c	269K	0	0	242K	0
0.5 GeV/c	340K	1.5K	1.5K	296K	0
1 GeV/c	1089K	382K	420K	262K	0
2 GeV/c	728K	333K	128K	173K	5K
3 GeV/c	568K	284K	107K	113K	15K
6 GeV/c	702K	394K	70K	197K	28K
7 GeV/c	477K	299K	51K	98K	24K
All momenta	4175K	1694K	779K	1384K	73K

> 4 Million events collected

1 GeV pions

Pion Event recorded at Protodune

・ロト ・ 四ト ・ 日ト ・ 日下

Content

- Introduction
- Long-Baseline Neutrino Experiments
- DUNE Overview
- The DUNE Single Phase Photon Detection System (PDS-SP)

< □ ト < □ ト < 三 ト < 三 ト</p>

- The Contribution of Latin America to the PDS-SP
- Summary

Consortium Membership

Brazil	Federal University of ABC	USA	Brookhaven National Lab		
Brazil	University Estadual de Feira de	USA	California Institute of Technology		
	Santana	USA	Colorado State University		
Brazil	Federal University of Alfenas Poços de Caldas	USA	Duke University		
Brazil	Centro Brasileiro de Pesquisas	USA	Fermi National Accelerator Lab		
	Físicas	USA	Idaho State University		
Brazil	University Federal de Goias	USA	Indiana University		
Brazil	Brazilian Synchotron Light	USA	University of Iowa		
	Laboratory LNLS/CNPEM	USA	Louisiana State University		
Brazil	Universidade de Campinas	USA	Massachusetts Institute of		
Colombia	Universidad del Atlantico		Technology		
Colombia	Universidad Sergia Ablada	USA	University of Michigan		
Colombia	University Antonio Nariño	USA	Northern Illinois University		
Czech Republic	Institute of Physics CAS, v.v.i.	USA	South Dakota School of Mines and Technology		
Czech Republic	Czech Technical University in Prague	USA	Syracuse University		
Paraguay	UNA (Ascuncion)	Italy	University of Bologna and INFN		
Peru	PUCP	Italy	University of Milano Bicocca and INFN		
Peru	Universidad Nacional de Ingineria (UNI)	Italy	University of Genova and INFN		
UK	Univ. of Warwick	Italy	University of Catania and INFN		
UK	University of Sussex	Italy	LNS Catania		
UK	University of Manchester	Italy	University of Lecce Aand INFN		
UK	Edinburgh University	Italy	INFN Milano		
USA	Argonne National Lab	Italy	INFN Padova		

< □ ト < □ ト < 巨 ト < 巨 ト < 巨 ト 三 の Q () 37/47

Photon Detector

Tasks of the PD

- t₀ determination (Trigger System)
- Calorimety: Collection of total light emitted
- Reconstruction and particles identification
- Gatch Michel Electrons

Figure: https://arxiv.org/pdf/1601.02984.pdf

38/47

Photon Collection Baseline

- Light Collection System: Collects photons from a large area and drives towards the actives sensors. X-ARAPUCA is the baseline design
- Silicon Photonmultipliers (SiPMs): MPPCs are currently the baseline. FBK is being strongly persued
- Old electronics: 48 SiPMs plus Summing boards
- Warm electronics: Cost-effective waveform digitization system developed by the Mu2e experiment that relies on commercial ultrasound chips (12-bit, 80MS/s)

Figure: https://arxiv.org/pdf/1601.02984.pdf

Content

- Introduction
- Long-Baseline Neutrino Experiments
- DUNE Overview
- The DUNE Single Phase Photon Detection System (PDS-SP)

< □ ト < □ ト < 三 ト < 三 ト</p>

- The Contribution of Latin America to the PDS-SP
- Summary

SiPM Connections

Three stages of the circuit for 48 SiPM:

or transimpedance

We want to know if we can amplify 12 SiPM in paralell (active ganging) with one output channel.

Two preamps models studied

Transimpedance model

- · This is a first order low pass filter
- Rf and Cf establish the bandwith and frequency cut point
- Eliminates high frequency noise

Charge integrator model

- · This is a second order band pass filter
- Cf and Cs establish the bandwith and frequency cut point
- · Eliminates low and high frequency noise

Digitalization Parameters

Introduction

Goal: Find the maximum number of true photons with different time windows and quantum efficiency.

ELECTRONICS SIMULATION

Maritza Delgado

Nov. 5 , 2018

- Data generated by module SPCounter_module.cc, based on SimPhotonCounter_module.cc.
- Sample: Beam Neutrinos prodgenie_nu_dune10kt_1x2x6_323_20171227T183346_merged1.root
- The first step was to identify the maximum number of true photons by each Optical Detector per event from PhotonsLite.

1.Scale factor

The scale factor was determinated using the effective detector areas and QE 1000 EVENTS 2. Effective Area: 15cm² values.

42/47

DAPHNE development

DAPHNE: Detector electronics for Acquiring PHotons from NEutrinos

Electronics requirements

- Signal to noise Ratio > 4
- Less than 1 μs time resolution
- Less than 1 kHZ dark noise rate
- 2000 PE dynamic range

Prof Javier Castaño (UAN) working at Fermilab in the design of the board.

DAPHNE development

DAPHNE Firmware Development.

EIA: Escuela de Ingenieros de Antioquia

EIA-FTA group members:

- Amalia Betancur
- Juan Suárez
- Guillermo Palacio
- Manuel Arroyave

Activities:

- FPGA control automatization.
- Formal Verification
- Gateware granularity
- Zero suppression algorithms
- Soft Core emulation
- Embedded digital modules

						1,640,000 n	5
Name	Value		1,200 ns	1,400 ns	P.:	60 ns	1,800 ns [2
🕌 rst	0						
🕌 elk	1						
🔓 sys_clk	1						
🔓 sys_rst	0						
诸 adc_clk	1	ururu	TUTUT	hnn	пипи		
诸 adc_rst	0						
诸 reset	0						
诸 locked	1						
🔓 elkin	1	LILIN		Inhanana	1111	1000000	hannannan
🔓 clkout0	1						
🔓 clkouf0	1						
🔓 clkout1	1						
🔓 clkouf1	1			hnn			
😼 pulse_in	0						
14 pulse_out	1						
16 1	0						
16 o	1						
👌 toggle_i	0						
🔓 toggle_o	1						
👌 toggle_o_	0						
> 😻 mult[3:0]	f						
> 😻 cou:0)	2	6					
> 😻 index[3:0	3	0		1 X -	<u> </u>	з (4 <u>)</u> 5
🔓 mmcm_fb	1				TUT		hannannan

Simulation of the clock system.

≪) ⊄ (∾ 45/47

Expected timeline

- 2020: Test of First DAPHNE Prototypes at ICEBERG
- 2021: Test of DAPHNE boards at ProtoDUNE II
- **③** 2024: Start installing first SP module
- 2025: Start installing second module and DUNE physics with atmospheric neutrinos.

(人間) シスヨン スヨン ヨ

46/47

- **③** 2026: Beam operation at 1.2 MW
- 2027: Add third FD Module
- 2029: Add fourth FD Module
- 2032: Upgrade to 2.4 MW beam

Summary

- **1** LBL experiments are ideal tools to test the neutrino physics
- BNF/DUNE has become a global international collaboration
- OUNE has a broad and rich physics program including CP violation probes, mass ordering determination, precision neutrino oscillation measurements. SN neutrinos and BSM searches
- OUNE prototypes functional and taking data
- Strong participation of LA in the Single PD module
- **O** Looking forward for first DUNE far Detector data in 2024

Backup Slides

<ロト < 部ト < 言ト < 言ト こ のへの 47/47

Neutrino-Nucleon Interactions

2.3 Proton Decay

Proton decay is expected in most new physics models

- But lifetime is very long, experimentally $\tau > 10^{33}$ vears
- Watch many protons with the capability to see a single decay
- Can do this in a liquid argon TPC •
 - For example, look for kaons from SUSY-inspired GUT p-decay
 - modes such as $p \to K^+ \overline{\nu}$

Clean signature

very low backgrounds

Decay Mode	Water	Cherenkov	Liquid A	iquid Argon TPC			
	Efficiency	Efficiency Background Efficience		Background			
$p \rightarrow K^+ \overline{\nu}$	19%	4	97%	1			
$p \rightarrow K^0 \mu^+$	10%	8	47%	< 2			
$p \rightarrow K^+ \mu^- \pi^+$			97%	1			
$n \rightarrow K^+ e^-$	10%	3	96%	< 2			
$n \rightarrow e^+ \pi^-$	19%	2	44%	0.8			
		1 Mt.yr		\bigcirc			

Remove incoming particle

Why Argon?

- Inert since need to avoid anything electronegative
 - In pure argon, ionization electrons can drift long distances (metres)
- Good dielectric properties, supports high-voltages/fields: 500 V/cm
- An excellent scintillator (128 nm) and transparent at this wavelength
- Argon is cheap and readily available (1% of atmosphere)

	Water	-16	Ne	Ar	Kr	Xe
Boiling Point [K] @ Iatm	373	4.2	27.1	87.3	120.0	165.0
Density [g/cm³]	I.	0.125	1.2	1.4	2.4	3.0
Radiation Length [cm]	36.1	755.2	24.0	14.0	4.9	2.8
Scintillation [γ /MeV]	-	19,000	30,000	40,000	25,000	42,000
dE/dx [MeV/cm]	1.9		1.4	2.1	3.0	3.8
Scintillation λ [nm]		80	78	128	150	175

・ロト・日本・日本・日本・日本・日本・日本

47/47

DAPHNE development

DAPHNE: Detector electronics for Acquiring PHotons from NEutrinos

Electronics requeriments

- Signal to noise Ratio > 4
- Less than 1 μs time resolution
- Less than 1 kHZ dark noise rate
- 2000 PE dynamic range

UAN group members:

- Deywis Moreno
- Yohany Rodriguez
- Maritza Delgado

Prof Javier Castano is working at Fermilab in the design of the board.

Determination of Digitalization Parameters

TallBo)

guide)

Introduction

Goal: Find the maximum number of true photons with different time windows and quantum efficiency.

- · Data generated by module SPCounter module.cc, based on SimPhotonCounter module.cc.
 - Sample: Beam Neutrinos prodgenie nu dune10kt 1x2x6 323 20171227T183346 merged1.root
 - The first step was to identify the maximum number of true photons by each Optical Detector per event from PhotonsLite.

1.Scale factor

The scale factor was determinated using the effective detector areas and QE 1000 EVENTS values Entries 1000 500 - 4.05 cm² (0.00287) (current standard in vanilla larsoft, - 1us - 12ns

2. Effective Area: 15cm²

- 6ns

- 1na

250 Maxphotons **B b**

47/47

Maritza Delgado

Nov. 5 , 2018

DAPHNE development

<ロ > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > <

DAPHNE development

Universidad Antonio Nariño (2017)

UAN group members:

- Deywis Moreno (Group leader)
- Javier Castaño
- Yohany Rodriguez
- Maritza Delgado (Graduate student)

Activities:

- Definition of the electronics for the Photon Detection System.
- Hardware design.

Prof Javier Castano working at Fermilab in the design of the PDS electronics.

47/47

DAPHNE Firmware Development.

EIA: Escuela de Ingenieros de Antioquia (2019)

EIA-FTA group members:

- Amalia Betancur (Group leader)
- Juan Suárez
- Guillermo Palacio
- Manuel Arroyave (Researcher)

Activities:

- FPGA control automatization.
- Hardware design.

							1,640	000 n	5			
Name	Value		1,280 ns		1,403		μ.,	ee ns		1,800		2
🕌 rst	0											
🕌 clk	1											
🔓 sys_elk	1											
🔓 sys_rst	0											
诸 adc_clk	1	ururu	uπ	Л	hΠ	ЛГ	uht	ПП	Л	hπ	ΠГ	UΠ
诸 adc_rst	0											
诸 reset	0											
诸 locked	1											
诸 elkin	1		10000	Ш	hnnn		ΠП	1000		ШП	Ш	101
🔓 clkout0	1											
🔓 cikouf0	1											
诸 clkout1	1	ururu	m	л	hΠ	ЛГ	υn	ПП		пπ	ΠГ	un
🔓 clko…uf1	1	unu	m	Л	ιn	ЛГ	υn	ПП		пπ	ΠГ	UN
诸 pulse_in	0											
🏅 pulse_out	1											
lê i	0											
lå o	1											
👌 toggle_i	0						ΠΠ					10.0
🔓 toggle_o	1											
👌 toggle_o	0											
> ¥ mult[3:0]	f					f						
> 🔮 cou:0]	2	8										
> 🔮 index(3:0	з	0	X	1		2		3		4		5
🔓 mmcm_fb	1						ШΠ			ШП		UU)

Simulation of the clock system.

DUNE data analysis.

Univ. Sergio Arboleda (2017)

EIA-FTA group members:

- Luz Gomez (Group leader)
- Laura Gomez
- Andres Castillo
- Nestor Pachon (Undergraduate student)

Activities:

- Searches for Physics beyond the Standard Model at DUNE
- Reconstruction and identification tools.