Study of the $B_c \rightarrow [(\eta_c \rightarrow p\bar{p}) \, \mu^+ \nu_{\mu}]$ decay

Santiago Gómez¹

¹National University of Colombia

December 4, 2019

Table of contents

1 Motivation

- 2 Analysis strategy
- 3 Data set and selection
- 4 Invariant mass $p\bar{p}$
- 5 B_c corrected mass
- 6 Conclusions and future objectives.

- 2 Analysis strategy
- 3 Data set and selection
- 4 Invariant mass $p\bar{p}$
- 5 B_c corrected mass
- 6 Conclusions and future objectives.

Motivation: Why $B_c \rightarrow [(\eta_c \rightarrow p\bar{p}) \mu^+ \nu_\mu]$?

- This decay mode will help to expand the knowledge of the B_c^+ meson, which is a particle with very interesting characteristics, for example, it is the only meson consisting of two heavy quark of different flavors.
- This decay mode can be used to perform a leptonic universality test.

$$\frac{B_c \to \eta_c \,\mu^+ \nu_\mu}{B_c \to \eta_c \,e^+ \nu_e} = ?$$

2 Analysis strategy

- 3 Data set and selection
- 4 Invariant mass $p\bar{p}$
- 5 B_c corrected mass
- 6 Conclusions and future objectives.

Analysis strategy

Use $\eta_c \rightarrow p\bar{p}$ for η_c reconstruction.

For branching fraction measurement

- Use $B_c \rightarrow [(J/\psi \rightarrow p\bar{p}) \mu^+ \nu_{\mu}]$ as normalization channel
 - Same final state, similar kinematic distribution
 - Reconstruct and select together with the signal channel

$\frac{N_{\eta_c}}{N_{J/\psi}} = \frac{\mathsf{BF}(B_c^+ \to \eta_c \,\mu^+ \,\nu_\mu) \times \mathsf{BF}(\eta_c \to p\bar{p}) \times \epsilon(B_c^+ \to \eta_c \,\mu^+ \,\nu_\mu)}{\mathsf{BF}(B_c^+ \to J/\psi \,\mu^+ \,\nu_\mu) \times \mathsf{BF}(J/\psi \to p\bar{p}) \times \epsilon(B_c^+ \to J/\psi \,\mu^+ \,\nu_\mu)}$

Available in PDG. Obtained by fitting $m(B_c^+)$ and $m(p\bar{p})$ distribution. Obtained by MC

2 Analysis strategy

3 Data set and selection

- 4 Invariant mass $p\bar{p}$
- 5 B_c corrected mass
- 6 Conclusions and future objectives.

Data set and selection

Run 2 pp collision (2016+2017)

	VARIABLE	SELECTION CRITERIA
Trigger		L0_Hadron_TOS Hlt1(Two)TrackMVADecision_TOS Hlt2Topo(2,3,4)BodyDecision_TOS
	P_T	>1300MeV/c
	Track fit χ^2 /NDF	<1.6
Proton	Track impact parameter χ^2	>9
and	Probability that the candidate	>0.8
anti proton candidates	is a proton Probability that the candidate is a pion	<0.3
	Probability that the candidate is a kaon	<0.3
Charmonium	Fit χ^2 for the secondary vertex	<5
candidates	Flight distance χ^2	>50
Muon	Track fit χ^2 /NDF	<3.0
candidates	Probability that the candidate	>0.5
	is a muon	
Multiplicity	SPD hits	<500
	We are requiring common secondary vertex for charmonium and muon	<1.5 <i>o</i>

- 2 Analysis strategy
- 3 Data set and selection

4 Invariant mass $p\bar{p}$

- 5 B_c corrected mass
- 6 Conclusions and future objectives.

Invariant mass $p\bar{p}$

Figure: Histogram of the invariant mass $M(p\bar{p})$ without applying the cuts.

Invariant mass $p\bar{p}$ with cuts (PRELIMINARY)

Figure: Histogram of the invariant mass $M(p\bar{p})$ applying the cuts.

- 2 Analysis strategy
- 3 Data set and selection
- 4 Invariant mass $p\bar{p}$

5 B_c corrected mass

6 Conclusions and future objectives.

Homemade Montecarlo

- With the use of pythia, the momenta of the B^+ meson were generated. These momenta were used in first approximation for the B_c^+ meson.
- The decays of B_c mesons were simulated through the use of EvtGen.
- Only events containing protons and muon within the detector's acceptance were allowed, that is between 10mrad and 400mrad.

Homemade Montecarlo: $M(p\bar{p}\mu)$

Homemade Montecarlo: *B_c* corrected mass

The histogram of the corrected mass was constructed using the definition, $M_{corr} = \sqrt{M^2(J/\psi \mu) + P_{\perp}^2} + P_{\perp}$. P_{\perp} is the momentum component of $p\bar{p} \mu$ transverse to B_c flight direction.

S. Gómez (.)

Homemade Montecarlo: *B_c* corrected mass

A convolution was performed between the histogram obtained in the previous step and a Gaussian function with $\sigma=372,80\pm15,09 {\rm MeV}$ (It is the resolution value in the M_{corr} distribution).

 B_c corrected mass

B_c corrected mass - $M_{corr} = \sqrt{M^2(J/\psi \,\mu) + P_{\perp}^2 + P_{\perp}}$ (PRELIMINARY)

Corrected mass between $4200 MeV/c^2$ and $7500 MeV/c^2$ (PRELIMINARY)

Figure: Histogram of the corrected mass between $4300 MeV/c^2$ and $7500 MeV/c^2$

Fit to the corrected mass between $4300 MeV/c^2$ and $7500 MeV/c^2$ (PRELIMINARY)

Figure: Histogram and fit to the corrected mass between $4300 MeV/c^2$ and $7500 MeV/c^2$ adding a exponential background

Conclusions and future objectives.

- The relationship between η_c signal events and J/ψ signal events is consistent with the theory.
- Better cuts will be made using MVA tools (for example Boosted decision trees) in order to maximize the signal-background ratio.
- When we get the Montecarlo samples, we hope to refine the analysis and calculate the efficiencies.

- A. Usachov , V. Zhovkovska, S. Barsuk, J. He: Measurement of η_c production via the decay $\eta_c \rightarrow p\bar{p}$ at $\sqrt{s} = 13$ TeV.
- **Garlos Sánchez Mayordomo. Study of the** $B_s \rightarrow \phi \gamma$ radiative decay at LHCb.

THANK YOU VERY MUCH