Constraints for a Z' boson with non-universal couplings in a supersymmetric model

Carlos Eduardo Díaz Jaramillo

Universidad Nacional de Colombia, Sede Bogotá - UNAL

December 2, 2019

◆ロト ◆問 ト ◆ 恵 ト ◆ 恵 ・ 夕 Q ○

- Introduction
- 2 The non-supersymmetric model
- 3 A non universal $U(1)_X$ supersymmetric model
- 4 Results
- Conlusions

- Introduction
- 2 The non-supersymmetric model
- \bigcirc A non universal $U(1)_X$ supersymmetric model
- 4 Results
- Confusions

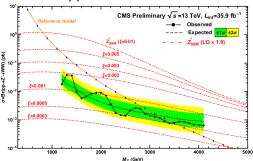
The Z' boson

- One of the important searches for the physics beyond the Standard Model (BSM) is for the Z' boson.
- It can be predicted by extensions to the SM's gauge symmetry, such as $SU(3)_C \times SU(2)_L \times U(1)_Y \times U(1)_X$.
- Experimental data from the LHC has constrained the Z' boson at the TeV scale.

The Z' boson

- One of the important searches for the physics beyond the Standard Model (BSM) is for the Z' boson.
- It can be predicted by extensions to the SM's gauge symmetry, such as $SU(3)_C \times SU(2)_L \times U(1)_Y \times U(1)_X$.
- ullet Experimental data from the LHC constrain the Z' boson at the TeV scale.

$$p\bar{p} \rightarrow Z' \rightarrow W^+W^-$$

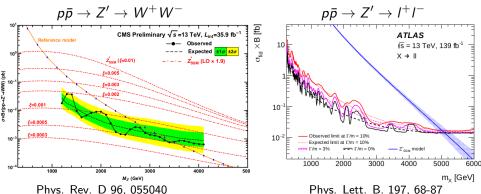


Phys. Rev. D 96, 055040

5 / 25

The Z' boson

- One of the important searches for the physics beyond the Standard Model (BSM) is for the Z' boson.
- It can be predicted by extensions to the SM's gauge symmetry, such as $SU(3)_C \times SU(2)_L \times U(1)_Y \times U(1)_X$.
- ullet Experimental data from the LHC constrain the Z' boson at the TeV scale.



Díaz, C. E. (UNAL)

December 2, 2019 6 / 25

- Introduction
- 2 The non-supersymmetric model
- \bigcirc A non universal $U(1)_X$ supersymmetric model
- 4 Results
- Confusions

The non-supersymetric model (Phys. Rev. D 95, 095037)

General Remarks

- The SM's symmetry is extended to $SU(3)_C \times SU(2)_L \times U(1)_Y \times U(1)_X \times \mathbb{Z}_2$.
- The $U(1)_X \times \mathbb{Z}_2$ sector was chosen non universal for explaining naturally the fermion mass hierarchy.
- For cancelling chiral anomalies fermions fields were considered. They get their mass with a scalar singlet χ , that also breaks the $U(1)_X$.

$$\begin{array}{lll} \frac{\text{Scalar bosons}}{\text{Higgs doublets}} & X & \mathbf{Z}_2 \\ \hline Higgs doublets & & M_A = 0 & M_Z \approx \frac{g_V}{C_w} & M_{Z'} \approx \frac{g_X v_\chi}{3}. \\ \phi_1 = \begin{pmatrix} \phi_1^+ \\ \frac{h_1 + v_1 + i \eta_1}{\sqrt{2}} \end{pmatrix} & 2/3 & + \\ \phi_2 = \begin{pmatrix} \phi_2^+ \\ \frac{h_2 + v_2 + i \eta_2}{\sqrt{2}} \end{pmatrix} & 1/3 & - \\ Higgs singlets & & & \\ \chi = \frac{\xi_\chi + v_\chi + i \zeta_\chi}{\sqrt{2}} & -1/3 & + \\ \end{array}$$

 Díaz, C. E. (UNAL)
 December 2, 2019
 8/25

The non-supersymetric model

General Remarks

 $\chi = \frac{\xi_{\chi} + v_{\chi} + i\zeta_{\chi}}{\sqrt{2}}$

- The SM's symmetry is extended to $SU(3)_C \times SU(2)_L \times U(1)_Y \times U(1)_X \times \mathbb{Z}_2$.
- The $U(1)_X \times \mathbb{Z}_2$ sector was chosen as non-universal for explaining naturally the fermion mass hierarchy.
- For cancelling chiral anomalies fermions fields were considered. They get their mass with a scalar singlet χ , that also breaks the $U(1)_X$.

$$\begin{array}{lll} \frac{\text{Scalar bosons}}{\text{Higgs doublets}} & X & \mathbf{Z}_2 \\ \hline & Higgs doublets \\ \phi_1 = \begin{pmatrix} \phi_1^+ \\ \frac{h_1 + v_1 + i \eta_1}{\sqrt{2}} \end{pmatrix} & 2/3 & + \\ \phi_2 = \begin{pmatrix} \phi_2^+ \\ \frac{h_2 + v_2 + i \eta_2}{\sqrt{2}} \end{pmatrix} & 1/3 & - \\ \hline & Higgs singlets \\ \chi = \frac{\varepsilon_z + v_z + i \zeta_z}{\sqrt{2}} & -1/3 & + \\ \sigma & -1/3 & - \end{array} & \begin{array}{ll} \text{The masses of neutral vector bosons are} \\ M_A = 0 & M_Z \approx \frac{gv}{C_w} & M_{Z'} \approx \frac{gx v_x}{3}. \\ M_{Z'_w} & C_W & 0 \\ C_W C_Z & -S_W C_Z & S_Z \\ C_W S_Z & S_W S_Z & C_Z \end{pmatrix} \begin{pmatrix} W_\mu^3 \\ B_\mu \\ B'_\mu \end{pmatrix} \end{array}$$

Díaz, C. E. (UNAL) December 2, 2019 9/25

The non-supersymetric model

General Remarks

- The SM's symmetry is extended to $SU(3)_C \times SU(2)_L \times U(1)_Y \times U(1)_X \times \mathbb{Z}_2$.
- The $U(1)_X \times \mathbb{Z}_2$ sector was chosen non universal for explaining naturally the fermion mass hierarchy.
- For cancelling chiral anomalies fermions fields were considered. They get their mass with a scalar singlet χ , that also breaks the $U(1)_X$.

Scalar bosons
$$X$$
 Z_2

Higgs doublets
$$\phi_1 = \begin{pmatrix} \phi_1^+ \\ \frac{h_1 + v_1 + i \eta_1}{\sqrt{2}} \end{pmatrix} \quad 2/3 \quad + \\ \phi_2 = \begin{pmatrix} \phi_2^+ \\ \frac{h_2 + v_2 + i \eta_2}{\sqrt{2}} \end{pmatrix} \quad 1/3 \quad - \\ \text{Hieroscipular}$$

Higgs singlets

$$\chi = \frac{\xi_{\chi} + v_{\chi} + i\zeta_{\chi}}{\sqrt{2}} \qquad -1/3 \qquad -1/3$$

 \mathbf{Z}_2 The masses of neutral vector bosons are $M_A = 0$ $M_Z \approx \frac{gv}{C}$ $M_{Z'} \approx \frac{gxv_\chi}{3}$.

$$\phi_{1} = \begin{pmatrix} \phi_{1}^{+} & 2/3 & + \\ \frac{h_{1}+v_{1}+i\eta_{1}}{\sqrt{2}} \end{pmatrix} \qquad 2/3 & + \\ \phi_{2} = \begin{pmatrix} \phi_{2}^{+} & 1/3 & - \\ \frac{h_{2}+v_{2}+i\eta_{2}}{\sqrt{2}} \end{pmatrix} \qquad 1/3 \qquad - \begin{pmatrix} A_{\mu} \\ Z_{\mu} \\ Z'_{\mu} \end{pmatrix} = \begin{pmatrix} S_{W} & C_{W} & 0 \\ C_{W}C_{Z} & -S_{W}C_{Z} & S_{Z} \\ -C_{W}S_{Z} & S_{W}S_{Z} & C_{Z} \end{pmatrix} \begin{pmatrix} W_{\mu}^{3} \\ B_{\mu} \\ B'_{\mu} \end{pmatrix}$$

The mixing between the interaction eigenstates changes respect to the SM.

Fermionic content

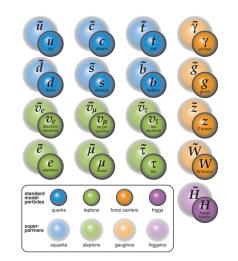
Quarks	X	\mathbf{Z}_2	Leptons	X	\mathbf{Z}_2
SM fermionic is	sospin do	ublets			
$q_L^1 = \left(egin{array}{c} U^1 \ D^1 \end{array} ight)_L$	+1/3	+	$\mathscr{C}_L^e = \left(egin{array}{c} u^e \ e^e \end{array} ight)_L$	0	+
$q_L^2 = \left(egin{array}{c} U^2 \ D^2 \end{array} ight)_L$	0	-	$\mathscr{C}^\mu_L = \left(rac{ u^\mu}{e^\mu} ight)_L$	0	+
$q_L^3 = \left(egin{array}{c} U^3 \ D^3 \end{array} ight)_L$	0	+	$\mathscr{C}^{ au}_L = \left(egin{matrix} u^{ au} \ e^{ au} \end{matrix} ight)_L$	-1	+
SM fermionic is	sospin sin	glets			
$U_{R}^{1,3}$	+2/3	+	$e_R^{e, au}$	-4/3	_
U_R^2	+2/3	_	e^{μ}_R	-1/3	_
$D_R^{1,2,3}$	-1/3	_			
Non-SM quarks		Non-SM leptons			
T_L	+1/3	_	$ u_R^{e,\mu, au}$	1/3	_
T_R	+2/3	_	$N_R^{e,\mu, au}$	0	_
$J_L^{1,2}$	0	+	E_L, \mathcal{E}_R	-1	+
$J_R^{1,2}$	-1/3	+	\mathcal{E}_L,E_R	-2/3	+

- Introduction
- 2 The non-supersymmetric model
- 3 A non universal $U(1)_X$ supersymmetric model
- 4 Results
- Confusions

The Higgs mass in a supersymetric standard model

- Supersymmetry relates fermions and bosons: They both can be merged into the superfield.
- It protects the Higgs from divergent mass renormalization.
- A second Higgs doublet superfield $\hat{\phi}'_1$ must be considered in order to cancel quantum anomalies.
- For getting the right SM's bosons masses, the vacuum expectation values shall fulfill:

$$\sqrt{v_1^2 + v_1'^2} = v = 246 \, \text{GeV}$$



https://www.americanscientist.org/ article/going-nowhere-fast

13 / 25

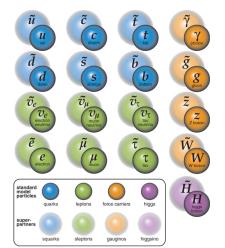
Díaz, C. E. (UNAL) December 2, 2019

The Higgs mass in a supersymetric standard model

• For large $\tan \beta = v_1'/v_1$, loop corrections due to stops should be as large as the tree level in order to get a 125 GeV mass. This can be seen from the approximate mass expression:

$$m_h^2 = m_Z^2 \cos^2 2\beta + \Delta m_h^2,$$

where Δm_h^2 comes from stops loop corrections.



https://www.americanscientist.org/ article/going-nowhere-fast

14 / 25

The Higgs sector in the supersymetric model

$$\hat{\Phi}_2 = \begin{pmatrix} \frac{h_1 + v_1 + i\hat{\eta}_1}{\sqrt{2}} \end{pmatrix} + \frac{1}{3} + 1 \quad \sigma = \frac{\hat{\sigma}_X + i\hat{\zeta}_\sigma}{\sqrt{2}} \quad -\frac{1}{3} \quad 0$$

$$\hat{\Phi}'_1 = \begin{pmatrix} \frac{\hat{h}'_1 + \nu'_1 + i\hat{\eta}'_1}{\sqrt{2}} \\ \hat{\phi}_1^{-\prime} \end{pmatrix} - 2/3^+ - 1 \ \hat{\chi}' = \frac{\hat{\xi}'_X + \nu'_X + i\hat{\zeta}'_X}{\sqrt{2}} + 1/3^+ \ 0$$

$$\hat{\Phi}_2' = \begin{pmatrix} \frac{\hat{h}_2' + v_2' + i\hat{\eta}_2'}{\sqrt{2}} \\ \hat{\phi}_2^{-1} \end{pmatrix} - 1/3^- - 1 \quad \sigma' = \frac{\hat{\xi}_2' + i\hat{\xi}_2'}{\sqrt{2}} + 1/3^- 0$$

- The field content is doubled for cancelling quantum anomalies.
- The VEV of the doublets are constrained by the electroweak boson masses:

$$\sqrt{v_1^2 + v_2^2 + v_1'^2 + v_2'^2} = v = 246 \,\text{GeV}$$

The most general superpotential respecting the symmetry is given by $W_{\phi} = -\mu_1 \hat{\Phi}_1' \hat{\Phi}_1 - \mu_2 \hat{\Phi}_2' \hat{\Phi}_2 - \mu_{\chi} \hat{\chi}' \hat{\chi} - \mu_{\sigma} \hat{\sigma}' \hat{\sigma} + \lambda_1 \hat{\Phi}_1' \hat{\Phi}_2 \hat{\sigma}' + \lambda_2 \hat{\Phi}_2' \hat{\Phi}_1 \sigma$

ロト (個) (重) (重) (重) の(で

Higgs potential: scalar fields

The scalar sector of the Higgs potential has three contributions:

- F-terms. $V_{F-terms} = \sum_{i} F_{i}^{*} F_{i}$, where $F_{i}^{*} = -\frac{\partial W[A_{1}, A_{2}, ..., A_{n}]}{\partial A_{i}}$.
- D-terms. $V_{D-terms} = \sum_s D_s^a D_s^a$, with $D_s^a = -g_s T_{ij}^a A_i^* A_j$. This part ensures the gauge symmetry.
- Soft-supersymmetry breaking potential:

$$\begin{split} V_{soft} &= -m_1^2 \Phi_1^\dagger \Phi_1 - m_1'^2 \Phi_1'^\dagger \Phi_1' - m_2^2 \Phi_2^\dagger \Phi_2 - m_2'^2 \Phi_2'^\dagger \Phi_2' - m_\chi^2 \chi^\dagger \chi - m_\chi'^2 \chi'^\dagger \chi' - m_\sigma^2 \sigma^\dagger \sigma - m_\sigma'^2 \sigma'^\dagger \sigma' \\ &+ \left[\mu_{11}^2 \epsilon_{ij} (\Phi_1'^{ij} \Phi_1^j) + \mu_{22}^2 \epsilon_{ij} (\Phi_2'^{ij} \Phi_2^j) + \mu_{\chi\chi}^2 (\chi\chi') + \mu_{\sigma\sigma}^2 (\sigma\sigma') - \tilde{\lambda}_1 \Phi_1'^\dagger \Phi_2 \sigma' - \tilde{\lambda}_2 \Phi_2'^\dagger \Phi_1 \sigma \right. \\ &+ \frac{2\sqrt{2}}{9} (k_1 \Phi_1^\dagger \Phi_2 \chi' - k_2 \Phi_1^\dagger \Phi_2 \chi^* + k_3 \Phi_1'^\dagger \Phi_2' \chi - k_4 \Phi_1'^\dagger \Phi_2' \chi'^*) + h.c. \bigg] \end{split}$$

The last terms break also the parity symmetry. If they weren't there, there would be scalar particles lighter than the Higgs boson.

(ロ) (型) (重) (重) (Q)

- Introduction
- 2 The non-supersymmetric model
- 3 A non universal $U(1)_X$ supersymmetric model
- 4 Results
- Confusions

Scalar mass spectrum

- Charged bosons: There is a goldstone boson that gives mass to the W^{\pm} particles. Additionally, there are three masive charged scalar particles with a mass at the soft-SUSY breaking scale and also the $U(1)_X$ breaking scale.
- **CP-odd bosons:** There are two goldstone bosons that give mass to Z and Z'. There are additionally 6 massive CP-odd particles, also at the soft-SUSY breaking scale and the $U(1)_X$ breaking scale.
- **CP-even masses:** There is a scalar boson at the electroweak scale. The other 7 massive particles of this kind are on the other higher energy scales. The mass of the lightest can be written as:

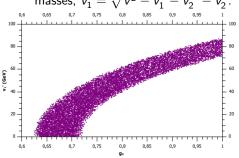
$$m_h^2 \approx m_Z^2 \left(\cos^2 2\tilde{\beta} + \frac{4}{9} \frac{g_X^2}{g^2 + g'^2} (\cos 2\beta_1 + \cos 2\beta_2)^2 \right)$$

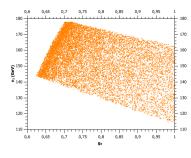
where $\tan^2\tilde{\beta}=\frac{v_1^2+v_2^2}{v_1'^2+v_2'^2}$, $\tan\beta_1=\frac{v_1}{v_1'}$ and $\tan\beta_2=\frac{v_2}{v_2'}$.

◆ロト ◆個 ト ◆ 恵 ト ◆ 恵 ・ 夕 Q (*)

Higgs boson mass constraints on the new interaction

- The squared Higgs mass gets a contribution proportional to the square coupling constant g_X^2 .
- A Montecarlo exploration was made on the parameter space v_1' vs g_X and v_2 vs g_X for obtaining the Higgs mass 125.3 ± 0.4 GeV at 95% confidence level.
- Since $m_t \sim v_1$ and $m_b \sim v_2'$, the domains for the exploration were [170-200] GeV and [3-7] GeV respectively. v_2 had full freedom, [0-246] GeV. v_1' is then constrained for obtaining the right SM boson masses, $v_1' = \sqrt{v^2 v_1^2 v_2'^2 v_2^2}$.





Díaz, C. E. (UNAL) December 2, 2019 19 / 25

Z' interaction with SM bosons and fermions

The previous results showed that $g_X > 0.63$. This gives strong implications on the lower mass bounds of the Z'.

The Z' interacts with the W^{\pm} bosons due to a mixing with Z:

$$\begin{pmatrix} A_{\mu} \\ Z_{\mu} \\ Z_{\mu}' \end{pmatrix} = \begin{pmatrix} S_W & C_W & 0 \\ C_W C_Z & -S_W C_Z & S_Z \\ -C_W S_Z & S_W S_Z & C_Z \end{pmatrix} \begin{pmatrix} W_{\mu}^3 \\ B_{\mu} \\ B_{\mu}' \end{pmatrix}$$

where, being

$$\sin \theta_Z = (1 + \cos^2 \beta) \frac{2g_X \cos \theta_W}{3g} \left(\frac{M_Z}{M_{Z'}}\right)^2$$

 $\tan \beta = \sqrt{v_1^2 + v_1'^2} / \sqrt{v_2^2 + v_2'^2}$

The Z' also interacts with SM's fermions

$$\begin{split} \mathcal{L}_{\mathit{int},\mathit{QB'}} = & \frac{g_{\mathit{X}}}{3} \, \bar{u}^1 \gamma^{\mu} P_L u^1 B'_{\mu} + \frac{2g_{\mathit{X}}}{3} \, \bar{u}^i \gamma^{\mu} P_R u^i B'_{\mu} \\ & + \frac{g_{\mathit{X}}}{3} \, \bar{d}^1 \gamma^{\mu} P_L d^1 B'_{\mu} - \frac{g_{\mathit{X}}}{3} \, \bar{d}^i \gamma^{\mu} P_R d^i B'_{\mu}, \end{split}$$

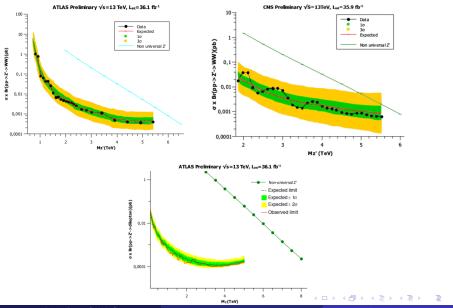
$$\begin{split} \mathcal{L}_{\mathit{int},eB'} &= -\frac{4\mathsf{g}_X}{3}\bar{\mathsf{e}}^e\gamma^\mu P_R \mathsf{e}^e B'_\mu - \frac{\mathsf{g}_X}{3}\bar{\mathsf{e}}^\mu\gamma^\mu P_R \mathsf{e}^\mu B'_\mu \\ &- \mathsf{g}_X\bar{\mathsf{e}}^\tau\gamma^\mu P_L \mathsf{e}^\tau B'_\mu - \frac{4\mathsf{g}_X}{3}\bar{\mathsf{e}}^\tau\gamma^\mu P_R \mathsf{e}^\tau B'_\mu \end{split}$$

The total cross sections of the decays $p\bar{p}\to w^+w^-$ and $p\bar{p}\to l^+l^-$ were calculated using MADGRAPH5 together with PHYTHIA 6 for introducing the PDF and parton shower, and Delphes 3 for detector simulation.

4 D > 4 D > 4 E > 4 E > E 9 Q C

20 / 25

Z' constraints from $p\bar{p} \rightarrow w^+w^-$ and $p\bar{p} \rightarrow l^+l^-$



- Introduction
- 2 The non-supersymmetric model
- 3 A non universal $U(1)_X$ supersymmetric model
- 4 Results
- Conlusions

Conclusions

- The Higgs boson mass gets a contribution from the D-term coming from $U(1)_X$ at tree level.
- For obtaining a mass of 125 GeV Higgs boson, the coupling constant of the new symmetry is bounded from below, $g_X > 0.63$.
- Diboson production constraints the Z' mass to be $M_{Z'} > 5$ TeV, similar with analyses from other authors. However, since $g_X > 0.63$, the dilepton production constraints were much stronger, giving approximately $M_{Z'} > 8$ TeV.

References

Constraints from other authors:

- Phys. Rev. D 96, 055040
- Phys. Lett. B. 197, 68-87

The non-supersymmetric model

Phys. Rev. D 95, 095037

The supersymmetric model

Phys. Rev. D 100, 055037

Other $U(1)_X$ extended models

- J. High Energy Phys. 05 113
- Phys. Rev. D 89, 056008
- Phys. Rev. D 98, 015038

Constraints for a Z' boson with non-universal couplings in a supersymmetric model

Carlos Eduardo Díaz Jaramillo

Universidad Nacional de Colombia, Sede Bogotá - UNAL

December 2, 2019

→ロト→部ト→ミト→ミトーミーのQで