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COLEMAN-MANDULA THEOREM

Given G a group of bosonic symmetry. If:

1. G contains a subgroup locally isomorphic to Poincaré

2. For M>0, particles with m<M are finite.

3. Non trivial and analytic S-matrix

G is a direct product of Poincaré and an internal symmetry group.



HAAG-LOPUSZANSKI-SOHNIUS 
THEOREM

The generators of supersymmetry satisfy the positive metric condition

And belong to the representations            and            of Lorentz group.
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Covariant derivatives Chiral Field

Anti-Chiral Field

Kinetic Field
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Equations of motion

Scalar Potential

Kinetic Superpotential

Unbroken supersymmetry:

SUPERSYMMETRY BREAKS
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Large Mass Scale
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Superpotential Scalar Potential

Minimization

Supersymmetric Vacuum

Flat direction

Non-Supersymmetric Vacuum

Large curvature



FOUR GAUGE SUPERFIELDS
AND TWO SINGLETS

Superpotential



FOUR GAUGE SUPERFIELDS
AND TWO SINGLETS

Superpotential

Scalar Potential



FOUR GAUGE SUPERFIELDS
AND TWO SINGLETS

Scalar Potential



Minimization along

FOUR GAUGE SUPERFIELDS
AND TWO SINGLETS

Scalar Potential

Supersymmetric Vacuum



Minimization along

FOUR GAUGE SUPERFIELDS
AND TWO SINGLETS

Scalar Potential

Supersymmetric Vacuum



Minimization along

FOUR GAUGE SUPERFIELDS
AND TWO SINGLETS

Scalar Potential

Supersymmetric Vacuum

Mixed State



Minimization along

FOUR GAUGE SUPERFIELDS
AND TWO SINGLETS

Scalar Potential

Non-supersymmetric Vacuum



Mass Matrix

FOUR GAUGE SUPERFIELDS
AND TWO SINGLETS

Scalar Potential



Mass Matrix

FOUR GAUGE SUPERFIELDS
AND TWO SINGLETS

Scalar Potential

Two complex Scalars



Mass Matrix

FOUR GAUGE SUPERFIELDS
AND TWO SINGLETS

Scalar Potential

Two complex Scalars



Mass Matrix

FOUR GAUGE SUPERFIELDS
AND TWO SINGLETS

Scalar Potential

Two complex Scalars Two Fermions



CONCLUSIONS

• The smallest system of interacting quiral fields that exhibit
spontaneous SUSY breaking contains three of them.

• Spontaneous breaking of SUSY in Super-QED gives non-masive
photon and photino.

• SUSY breaking is crucial for the inflaton Flat directions. 


