A theoretical framework for multi-component dark matter

Based on 1911.05515, with Oscar Zapata

Carlos E. Yaguna Escuela de Física UPTC, 2019

The dark matter may consist of several different particles

What has been measured is Ω_{DN}

 Ω_{DM} can be explained by several particles

 $\Omega_{\rm DM} h^2 = 0.1200 \pm 0.0012$

This is called multicomponent DM

Multi-component dark matter could be discovered in standard DM searches

But the stability of these different particles is difficult to understand theoretically

For one DM particle a Z₂ symmetry can be used

It's ad hoc

With a Z₂ only one particle is stable

The lightest one among the odd

A Z_N can stabilize multiple particles

Battel, 1007.0045

We consider scenarios with several scalar fields charged under a single Z_{N}

These scalar fields are the DM particles

$$1, w, w^2, ..., w^{N-1}, \text{ with } w = \exp(i2\pi/N)$$
 $\phi_{\alpha} \sim w^{\alpha}, \text{ with } \alpha = 1, 2, ..., k, \text{ and } k \le N/2$

They interact via the Higgs portal

And give rise to novel processes

Models of multi-component DM based on a Z_N symmetry are very interesting

The Z_N symmetry may be a remnant from a U(1)

Related to SM extensions?

Up to N/2 scalars can be stabilized

One of them may be real

How many DM particles do we get?

It depends on the masses!!

To stabilize two dark matter particles at least a Z_{Λ} is required

For a Z_6 with fields ϕ_2 , ϕ_3 it is possible to get unconditional stability

For 3 DM particles the stability regions are not so trivial

For 3 DM particles the stability regions are not so trivial

These analyses can be easily extended to more than 3 DM particles

Z_9 with fields $\phi_{1,2,3,4}$:

It follows that the full stability region is given by the condition $M_2 < 2M_1 \land M_4 < 2M_2 \land M_4 < 2M_3 \land M_2 < 2M_4 \land M_1 < M_2 + M_3 \land M_2 < M_1 + M_3 \land M_3 < M_1 + M_2 \land M_1 < M_3 + M_4 \land M_3 < M_4 < M_4 \land M_4$

$$M_1 + M_4 \wedge M_4 < M_1 + M_3$$

Z_{10} with fields $\phi_{1,2,3,4,5}$:

The stability condition for the five fields is $M_2 < 2M_1$, $M_1 < M_2 + M_3$, $M_2 < M_1 + M_3$, $M_3 < M_1 + M_2$, $M_4 < 2M_2$, $M_1 < M_3 + M_4$, $M_3 < M_1 + M_4$, $M_4 < M_1 + M_3$, $M_4 < 2M_3$, $M_2 < 2M_4$, $M_2 < M_3 + M_5'$, $M_3 < M_2 + M_5'$, $M_5' < M_2 + M_3$, $M_1 < M_4 + M_5'$, $M_4 < M_1 + M_5'$, $M_5' < M_1 + M_4$.

Many models for multi-component DM can be implemented within this framework

A Z_N symmetry is well motivated

Up to N/2 DM particles can be stabilized

These models have not been studied

