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The problem of initial
conditions In cosmology

IDONTKNOW

e Although there is no firm
physical principle that e'®
underlies it, the reasonable |
expectation is that models of ‘..
the universe should not be &
sensitive to initial conditions.
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The problem of initial
conditions In cosmology

* |nflation addresses the
special initial conditions of
the Hot Big Bang theory
(underlying the flat and
horizon problems) in an
Interesting and important
way.

Nontheless, inflation remains
as a phenomenological
scenario that is yet to be
rooted in a fundamental
theory.
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The problem of initial
conditions In cosmology

* The era of inflation is believed
to set the initial conditions for
the Big Bang.

 Nevertheless, inflation itself is
not completely free of initial
conditions.

For example: the inflaton
velocity must be small
enough to allow inflation
to start.




Slow-roll inflation as an
attractor In scalar—fleld mflatlon
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* Slow-roll inflation is an attractor for every single-scalar-field model.
However, do all the phase-space trajectories approach the attractor?




Some properties of a good
physical theory

r . N

Unstable Model X

Instabilities were detected and locked for this model!

For a list of the instabilities, review the Reactions results. All
locked joints will display the message "LOCKED" for the reaction
corresponding to the direction the joint was locked.

Would you like to create a new model view with only the locked joints selected?

It must avoid any kind of instability:

* - Tachyonic: a Hamiltonian that is
unbounded from below.

* - Ghost: negative kinetic energy terms.

* - Laplacian: limitless growing perturbations.



Some properties of a good
physical theory

r . N

Unstable Model X

Instabilities were detected and locked for this model!

For a list of the instabilities, review the Reactions results. All
locked joints will display the message "LOCKED" for the reaction
corresponding to the direction the joint was locked.

Would you like to create a new model view with only the locked joints selected?

* It must preserve causality.

* It must preserve unitarity.



The Horndeski theory

e |tis a scalar-tensor theory of
gravity.

e The action involves, at most,
second-order derivatives of
the fields involved.

 The field equations are, at
most, second order.

e |tis a instability-free theory.

Horndeski, Int. J. Theor. Phys. 1974 Gregory W. Horndeski



The Horndesk' theory x=—jwev)
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Extensions to the Horndeski
theory
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“Overcoming Gravity”

* Multi Galileons.
« Beyond Horndeski.

« DHOST (Degenerate Higher-
Order Scalar-Tensor theories).

* Generalized Proca.
* Beyond generalized Proca.

 Extended vector-tensor (or
DHOVT).

 Generalized SU(2) Proca

* Beyond generalized SU(2) Proca



The generalized SU(2) Proca
theory

 The standard Proca theory may be seen as the limit (a
frozen Higgs) of a valid particle physics model based
on a Higgs condensate.

Heisenberg, JCAP 2014
Tasinato, JHEP 2014

 The generalized SU(2) Proca theory may be seen as
the limit (invariance under a global SU(2)
transformation) of a non-Abelian SU(2) field theory.

Allys et. al., Phys. Rev. D 2016



Building elements

 Theories invariant under continuous local
transformations, either Abelian or non Abelian, are
built from the gauge field strength tensor £, , its
Hodge dual F,, , and (if the symmetry is
spontaneously broken) from the gauge field itself A, .

 Theories that don’t invoke gauge symmetries are built
also from the symmetric version S, of the gauge field
strength tensor:

0, =N 1 T VA

Allys et. al., JCAP 2016



The generalized SU(2) Proca
theory

up to six contracted Lorentz indices
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The generalized SU(2) Proca
theory

up to six contracted Lorentz |nd|ces
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The cosmic triad

* We want to describe the
observable universe. Therefore,
we employ the Friedmann-
Lemaitre-Robertson-Walker
metric at the background level.

* This is only possible if the field
configuration is a “cosmic
triad”: A = a0, .

* This configuration is invariant
both under SU(2), for the field
space, and SO(3), for the
physical space, in agreement
with the homomorphism
between the two groups.

Armendariz-Picon, JCAP 2004






Absence of ghosts and
Laplacian instabilities
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A novel mechanism to
Implement inflation

e Let’s split artificially our vector field fluid into two
components: one corresponding to the Yang-Mills
term and the other corresponding to the new Proca
terms.

 What would happen if, due to the dynamics of the
vector field, OY Al 7 X ?

 That means a singularity in the energy-momentum
tensor which must be avoided. How?: pc., — —00 SO
that paa1/py s — —1. Fine tuning??: yes, but the
system could “self tune”.

Rodriguez et. al., Phys. Dark Univ. 2018



A novel mechanism to
Implement inflation

PY M

 What about the pressure?: since Fy s — ,
have again a singularity in the energy-mome??’\tum
tensor unless Pga — —o0 ,i.e., Pcal/Pyy — —1.

we

 The only possible consistent way to do this is if the
new Proca fluid behaves as radiation: FPo.,; = p (;)al .

 The new Proca fluid: a radiation fluid with negative
energy density and pressure.

Rodriguez et. al., Phys. Dark Univ. 2018



A novel mechanism to
Implement inflation

 If the two fluids behave as radiation, could we say that
the actual total fluid also behaves as radiation?

* No. 0 divided by 0 could be anything:

TR o]
=

PYy M T PGal

 The actual value of the equation of state parameter
depends on the characteristics of the model.

* A realization of this scenario, with w = —1 ,1.e., ¢ =0
and self tuning will be presented in the following.

Rodriguez et. al., Phys. Dark Univ. 2018



Inflation as a non-eternal
asymptotic behaviour

¥

e The whole available

parameter space exhibits a
non-eternal asymptotic
behaviour that corresponds
to an inflationary solution with

1
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Inflation exit

* When & and ¢ approach O,
solutions leave the
asymptotic behaviour and
Inflation ends through
oscillations of 1) around 0
and oscillations of £ around
2 (like a scalar inflaton
decaying into radiation).




Equations of state
parameters

* Analytical results demonstrate that, in the asymptotic
limit, when y — Sz and & — +to0, the system reveals
the following behaviour for energy densities, pressures,
and equations of state parameters:

PyM = B 7 00
Py o8 . Pgal — —00 :
wym = Pym/pym — 3 B = I'cal/pGal — 3
pGal/,OYM — PGal/PYM — —1
L i
L= |
Py M 1T PGal

e This Is consistent with our previous expectations!



Some numerical results
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Some numerical results

| e £ behaviour: first going to 0 and
| then going to 2. Inflation lasts
! § enough e-folds to solve the
€ bl classical problems of the standard
| cosmology.
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Some numerical results

PGal
* ,yy behaviour: during

Inflation, it goes to -1. After
the end of inflation, it goes to
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Some numerical results

PGal : :
Py, P€ehaviour: during

Inflation, it goes to -1. After
the end of inflation, it goes to
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Some numerical results

e Arbitrary trajectory in the
phase In an € contour plot
of the phase space.




Some numerical results

e Arbitrary trajectory in the
phase In an € contour plot
of the phase space (zoom).




Some numerical results

« /1 contour plot of the
phase space. The
Inflationary energy scale is
always under control:

H/mp <ol




Further exploration of the
model

To investigate the possible attractor nature of the
cosmic triad configuration in a more general
anisotropic background.

To investigate the causal structure of the theory.

To include beyond generalized SU(2) Proca terms and
see how they change the model features.

To obtain the tensor to scalar ratio and the spectral
Index for the curvature perturbation and see how it fits
with observations.



Further exploratlon of the

* There Is an interesting prediction of the model:
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