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Accepted 2019 February 26. Received 2019 January 17; in original form 2018 May 3

ABSTRACT
We propose the use of robust, Bayesian methods for estimating extragalactic distance errors in
multimeasurement catalogues. We seek to improve upon the more commonly used frequentist
propagation-of-error methods, as they fail to explain both the scatter between different
measurements and the effects of skewness in the metric distance probability distribution. For
individual galaxies, the most transparent way to assess the variance of redshift independent
distances is to directly sample the posterior probability distribution obtained from the
mixture of reported measurements. However, sampling the posterior can be cumbersome for
catalogue-wide precision cosmology applications. We compare the performance of frequentist
methods versus our proposed measures for estimating the true variance of the metric distance
probability distribution. We provide pre-computed distance error data tables for galaxies
in three catalogues: NED-D, HyperLEDA, and Cosmicflows-3. Additionally, we develop a
Bayesian model that considers systematic and random effects in the estimation of errors for
Tully–Fisher (TF) relation derived distances in NED-D. We validate this model with a Bayesian
p-value computed using the Freeman–Tukey discrepancy measure as a posterior predictive
check. We are then able to predict distance errors for 884 galaxies in the NED-D catalogue
and 203 galaxies in the HyperLEDA catalogue that do not report TF distance modulus errors.
Our goal is that our estimated and predicted errors are used in catalogue-wide applications
that require acknowledging the true variance of extragalactic distance measurements.

Key words: methods: data analysis – methods: statistical – astronomical data bases: miscel-
laneous – catalogues – galaxies: distances and redshifts – galaxies: statistics.

1 IN T RO D U C T I O N

Understanding the uncertainties in redshift-independent extragalac-
tic distance measurements is absolutely necessary before reporting
statistically sound conclusions regarding the structure of the local
universe (Nasonova & Karachentsev 2011; Courtois et al. 2012;
Ma, Taylor & Scott 2013; Sorce et al. 2014; Springob et al. 2014;
Said et al. 2016; Kourkchi & Tully 2017), large-scale structure (Mc-
Clure & Dyer 2007; Javanmardi & Kroupa 2017; Roman & Trujillo
2017; Jesus et al. 2018; Torres & Cuervo 2018), and events like
transient gravitational wave detections (White, Daw & Dhillon
2011). Hubble constant estimations have been using increasingly
sophisticated statistical tools for primary distance determination
methods, such as Type Ia supernova (SNIa; Barris & Tonry 2004;
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Rubin et al. 2015; Dhawan, Jha & Leibundgut 2018), Cepheids
(Humphreys et al. 2013), or both (Riess et al. 2016). Although
most estimates of the Hubble constant use Cepheid calibration for
calibrating secondary methods (Tully & Pierce 2000; Freedman
et al. 2001; Freedman & Madore 2010), Mould & Sakai (2008)
have explored changes in Hubble constant estimation using the
Tully–Fisher (TF) relation without Cepheid calibration. Secondary
methods for extragalactic distance determination like the TF rela-
tion or the Fundamental Plane (FP) have recently become more
precise thanks to increasing volumes of data from surveys like 6dF
(Springob et al. 2014) and Two Micron All-Sky Survey (2MASS;
Jarrett et al. 2000; Springob et al. 2007) together with Spitzer
data (Sorce et al. 2013), along with improved statistical methods
(Obreschkow & Meyer 2013).

As of 2018, three multimeasurement catalogues including a
substantial amount of redshift-independent extragalactic distance
measurements have been released: HyperLEDA (Makarov et al.
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Figure 1. Estimated extragalactic distance errors versus median extragalactic distance for galaxies with N < 6 (left) and N > 5 (right) redshift-independent
distance measurements in NED-D according to the H, M, Q, and P error models (explained in the text), showing linear regressions and confidence intervals
computed using the SEABORN.REGPLOT PYTHON function.

2014), NED-D (Mazzarella & Team 2007; Steer et al. 2017),
and Cosmicflows-3 (Tully, Courtois & Sorce 2016). HyperLEDA
includes a homogenized catalogue for extragalactic distances in
the nearby universe, with 12 866 distance measurements for 518
galaxies to date. NED-D is the NASA/IPAC Extragalactic Dis-
tance catalogue of redshift-independent distances, which compiles
326 850 distance measurements for 183 062 galaxies in its 2018
version. Here, ∼1800 galaxies (∼1 per cent) have more than 13
distance measurements, and 180 galaxies (∼0.1 per cent) have
distance measurements using more than six different methods.
Cosmicflows-3 is the most up-to-date catalogue, which reports dis-
tance measurements for 10 616 galaxies (all of which include errors)
using up to four distance determination methods, calibrated with
supernova luminosities. However, unlike HyperLEDA or NED-
D, Cosmicflows-3 only reports the latest distance measurement
for each method. In HyperLEDA, NED-D, and Cosmicflows-3
errors are reported as one standard deviation from the reported
distance modulus. Treatment of errors for combining distance
moduli across methods or across measurements is suggested by
Mazzarella & Team (2007) and Tully et al. (2016) to be based
on weighted estimates such as the uncertainty of the weighted
mean, albeit with caution partly due to the heterogeneous origin
of the compiled data and partly due to Malmquist bias. In the
case of NED-D, this is additionally complicated by the fact
that many errors are not reported or are reported as zero. In
fact, the TF relation method has the largest number of galaxies
with non-reported distance modulus errors (884 to date). Even
though extragalactic distances measured using the TF relation were
originally reported to have a relative error in distance modulus
of 10–20 per cent (Tully & Fisher 1977), we consider that this
conservative estimate can be improved upon by using a predictive
model based on the distance error of galaxies that use the same
distance determination method. This requires a robust estimation
of the variance of extragalactic distances based on the available
data.

For many galaxies in all three catalogues, the random error for
each distance modulus measurement εi (for i = 1, ..., N, for N dis-

tance measurements per galaxy) is not representative of the scatter
across measurements, even when considering the same method for
determining distances. In addition, distance modulus distributions
for each measurement (which are assumed to be Gaussian) are
transformed to lognormal distributions in metric distance space.
This can introduce a significant bias in peculiar velocity studies for
large-scale structure studies (Watkins & Feldman 2015). We im-
prove upon previous methods by robustly estimating the underlying
variance across measurements and distance determination methods.
To do this, we measure the 84th and 16th percentiles, and the median
absolute deviation of the bootstrap-sampled posterior probability
distribution of each extragalactic distance (Chaparro Molano et al.
2018). We compare our results to other more commonly used
frequentist methods, such as the weighted estimates mentioned
above, and we produce pre-computed data tables for the three
catalogues mentioned above, which can be found in the repository
for this work at https://github.com/saint-germain/e
rrorprediction. We then perform a Bayesian analysis of the
systematics and randomness of the computed errors in the NED-
D catalogue for TF relation derived distances. From this analysis
we build predictive models for the estimation of errors and evaluate
them by performing posterior predictive checks using a discrepancy
measure-derived Bayesian ‘p-value’ (Gelman, Meng & Stern 1996).
Furthermore, we make predictions for the 884 galaxies in the NED-
D catalogue and the 203 galaxies in the HyperLEDA catalogue
whose distances were measured using the TF relation but have non-
reported errors. Inference based on Bayesian posterior predictive
checks has been advocated for in Gelman (2003) and Chambert,
Rotella & Higgs (2014).

We organize this paper as follows. In Section 2, we talk about
the posterior distribution of distance for individual galaxies and
set up methods for measuring its variance. In Section 3, we make a
comparison between the proposed variance estimation methods, and
in Section 4, we propose and evaluate predictive Bayesian models
for two robust methods of error estimation, and we summarize our
work in Section 5. The Appendix includes a description and brief
analysis of extragalactic distance error data tables pre-computed
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Figure 2. Comparison of four examples of extragalactic distance posterior distribution draws (10 000 per measurement) and modelled distributions for
UGC 06667, NGC 1558, UGC 08186, and UGC 12792 using the Tully–Fisher (TF) method for distance determination in NED-D. The methods used for
approximating the posterior distribution (H, M, P, and Q) are described in the text.

with the methods described in this paper for the HyperLEDA,
Cosmicflows-3, and NED-D catalogues.

2 ESTIMATION O F EXTRAGALACTIC
DISTA N C E ERRO RS

The best approach to consider the effects of random and system-
atic errors in catalogue-wide, multimethod distance analyses is
to directly sample the posterior probability distribution of each
extragalactic distance. This can be achieved by drawing distance
modulus samples from P(μ), which is the unweighted mixture
of normal distributions corresponding to each distance modulus

measurement μi,

μ ∼
N∑
i

N (μi, ε
2
i ),

and then converting to metric distance,

D = 10
μ
5 +1.

Therefore,

DG ∼
N∑
i

lognormal(Mi, σ
2
Mi

). (1)

Here Mi = ln Di and σMi
= εi ln 10.
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Figure 3. Estimated extragalactic distance errors versus median extragalactic distance for galaxies with more than five TF distance measurements in NED-D
according to the H, Q, and P (left) and Q and M (right) error models, showing linear regressions and confidence intervals computed using the SEABORN.REGPLOT

PYTHON function.

Figure 4. Estimated extragalactic distance errors versus median extragalactic distance using the TF method for distance determination in NED-D, according
to the H error model (left) and the M error model (right) showing linear regressions and confidence intervals computed using the SEABORN.REGPLOT PYTHON

function.

2.1 Estimating the variance of P(DG)

Although directly sampling the distribution of DG is the most
transparent way to acknowledge the true variance of distance
measurements, it is not a very efficient way to achieve a standardized
treatment of errors. One simple measure of the variance of DG that
acknowledges the possible skewness of the distribution is to take
the median 16th and 84th percentile of 10 000 bootstrap samples
of the distribution of DG, e.g. one bootstrap sample corresponds
to N draws, one from each reported measurement. In our pre-
computed error tables we report these quantities asDmin andDmax,
respectively.

It can be even more convenient to treat each extragalactic metric
distance DG as a normal random variable with a single-valued σ D

as a measure of the uncertainty in the estimation of an extragalactic
distance,

DG ∼ N (D, σ 2
D). (2)

For this reason we compare four methods for estimating the D, σD

pair. Two of these methods (H, M) use robust measures of the
distribution of each extragalactic distance, and the other two (P, Q)
use measures based on propagation of errors.

Methods H and M, which are the methods we propose to robustly
estimate σ D in equation (2), are based on measuring the median
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Figure 5. Discrepancy plot for the Bayesian quadrature model (equation 9) based on errors estimated using method H for NTF > 23, 24, 25 (left) and using
method M for NTF > 12, 13 (right).

and variance of repeated bootstrap samples from the distribution
of DG (equation 1) as mentioned in the previous section. Method
H takes D as the median of the bootstrap samples and σ D as the
half-distance (H) between the 84th and 16th percentiles of 10 000
bootstrap samples. We consider this to be the method that most
faithfully measures the variance regardless of the shape of the
posterior distribution. Method M takes D as the median of the
bootstrap samples and σ D as the median absolute deviation (MAD)
of the bootstrap samples. This method is better suited for avoiding
the effects of outliers.

The other two methods (P, Q) considered here are based on
commonly used frequentist estimates of the distance error. Method P
consists on calculating D from the weighted mean distance modulus
μ̄∗ with weights wi = ε−2

i . σ D is calculated by propagation (P) of
measurement errors, i.e. from the uncertainty of the weighted mean
(Tully et al. 2016),

σ P
D = 0.461 D̄∗

(
N∑
i

wi

)−1/2

. (3)

Method P does not take into account the scatter in distance
measurements for single galaxies, which is why it can be convenient
to calculate σ D as the sum in quadrature (Q) of the propagated
uncertainty of the weighted mean and the propagated unbiased
weighted sample variance σ ∗

D:

σ
Q
D =

[(
σ P

D

)2 +
(
σ ∗

D

)2
]1/2

. (4)

Here σ ∗
D is calculated as (Brugger 1969)

σ ∗
D = 0.461 D̄∗

√
N

N − 1.5

∑N

i wi(μi − μ̄∗)2∑N

i wi

. (5)

If the non-robust P and Q methods were truly representative of the
variance of the distribution of DG, they should yield similar results
as the H or M methods. The following section shows that this is not
the case.

3 C O M PA R I S O N O F D I S TA N C E E R RO R
ESTI MATI ON METHODS

In this section, we focus on NED-D distance measurements since
it is the largest of the three catalogues considered here. A full
discussion of our error estimation method applied to multimethod
measurements in the HyperLEDA, NED-D, and Cosmicflows-3
is given in the Appendix. A repository for this work, including
the pre-computed error tables for the HyperLEDA, NED-D, and
Cosmicflows-3, is located at https://github.com/saint
-germain/errorprediction. From here on, when we men-
tion distance measurements in the NED-D catalogue, we will be
excluding from our analysis measurements that require the target
redshift to calculate the distance, as indicated in the redshift
(z) field.

For galaxies with a number of distance measurements between
2 and 5 (Fig. 1, left), errors estimated with the quadrature (Q), and
median absolute deviation (M) methods show a linear trend with
similar slopes that overpredict the variance with respect to the half
84th–16th percentile distance (H) method, whereas the propagation
(P) method tends to underpredict the errors. Furthermore, errors
estimated using the Q method show a larger dispersion around the
linear trend than the H and M methods. Fig. 1 (right) shows that the
P and Q methods underpredict errors for galaxies with more than
five distance measurements.

3.1 Distance errors in Tully–Fisher relation derived
measurements

Even though our analysis for error estimation can be used to
combine distance measurements using different methods for single
galaxies, we think that due to method-intrinsic systematics it is
more appropriate to separate the analysis by method. Without loss
of generality, we now focus on galaxies whose distances have been
measured using the TF method in the NED-D catalogue because it
is the method with the largest number of galaxies without reported
measurement errors (884) in the data base.
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Figure 6. Corner plot showing the EMCEE sampling of the posterior probability distribution (equation 8) for the quadrature Bayesian model parameters
θθθ = (s, σr, f , a) based on errors estimated using method H for galaxies with more than 25 TF distance measurements. The dashed lines indicate the 16th, 50th,
and 84th percentile of the marginalized distribution of each parameter (shown at the top of each column), and the blue solid lines indicate the mean. This plot
was made using the CORNER PYTHON module.

Fig. 2 shows that for a small but representative sample of
galaxies with more than seven distance measurements, the centre
and variance of the posterior distribution of each extragalactic
distance is best explained using the H method, whereas the less
robust P and Q methods underpredict the variance. On the other
hand, the M method also underpredicts the variance because it is
a robust measure, and thus not as sensitive to outliers as methods
P and Q, as seen in the case of NGC 1558 in Fig. 2. For the more
symmetrical posterior distribution of UGC 12792, the M and Q
methods predict the same centre and variance.

Fig. 3 shows that the Q and P methods underpredict distance
errors for galaxies with more than five TF distance measurements.
On the other hand, method Q underpredicts distance errors with

respect to the M method, which again shows a tighter linear
correlation due to the robustness of the M measure. However, the
scale of H and M errors (relative errors) does not depend strongly
on the limiting number of measurements for NTF > 3, as Fig. 4
shows.

The general correlation between distance and distance error
(Figs 1 and 3) means that there is a strong systematic component
in the variance of P(DG), which is expected from the conversion of
distance modulus to metric distance. To improve visualization, only
errors for galaxies with more than five TF distance measurements
are shown in Figs 3, 13, and 14.

Given that each σ D calculated using the H and M methods is
obtained from many realizations from the distribution of extra-

MNRAS 00, 1 (2019)
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Figure 7. Corner plot showing the EMCEE sampling of the posterior probability distribution (equation 8) for the quadrature Bayesian model parameters
θθθ = (s, σr, f , a) based on errors estimated using method M for galaxies with more than 13 TF distance measurements. The dashed lines indicate the 16th,
50th, and 84th percentile of the marginalized distribution of each parameter (shown at the top of each column), and the blue solid lines indicate the mean. This
plot was made using the CORNER PYTHON module.

galactic distances, it is also possible to calculate its variance as the
half-distance between the 84th and 16th percentile of bootstrap σ D

realizations. Fig. 13 (left) shows that the variance of the estimated
error is proportional to the error for the H and M methods. This will
be relevant in Section 4 when we construct a predictive model for
non-reported errors.

4 PRED ICTIVE BAY ESIAN MODELS FOR TF
MIS SIN G ERRO RS

In the multimeasurement catalogues considered here, we observe
that the scatter of reported distance measurements and reported
individual measurement errors does not match in most cases. This

situation happens because there are hidden systematic sources
intrinsic to each method of distance estimation. These systematics
cannot be removed, but they can be marginalized over in order to
estimate the true variance of a distance estimation method based
on multiple measurements. The central limit theorem indicates that
as the number of measurements increases, the behaviour of the
distance errors should settle toward being normally distributed.
Thus, if a correlation trend between distance measurements and
estimated errors can be explained from a Bayesian viewpoint, then
it should be possible to use a Bayesian model to predict missing
distance errors for a distance determination method, given enough
data. Since more measurements can increase our knowledge of
systematic uncertainties in distance measurements, the way we

MNRAS 00, 1 (2019)
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Figure 8. Projection of parameter set samples from the posterior probability distribution of the Bayesian quadrature model on to the σD versus DG scatter
plot for errors estimated using method H for galaxies with more than 25 TF distance measurements (left) and using method M for galaxies with more than 13
TF distance measurements (right).

Figure 9. Discrepancy plot for the Bayesian linear model (equation 11) based on errors estimated using method H for NTF > 13, 14, and 15 (left) and using
method M for NTF > 11, 12, and 13 (right).

explore and validate our Bayesian models is based on partitioning
our data by choosing different lower thresholds for N, the number
of measurements per galaxy.

As seen in Fig. 3, TF distance errors estimated using the robust
methods H and M grow in a roughly linear fashion with distance and
seem to be randomly distributed around this trend line. For this rea-
son we try out simple linear and quadratic Bayesian models in order
to be able to predict the value of missing distance errors. For this, we
use the EMCEEaffine invariant Markov chain Monte Carlo (MCMC)
ensemble sampler (Foreman-Mackey et al. 2013). Recently, emcee
has been proved to be useful in obtaining probabilistic estimations
for photometric redshifts (Speagle & Eisenstein 2017a,b). Since we

want to be able to predict non-reported errors, our model selection
is based on posterior predictive checks, i.e. we rely on models that
can create synthetic data sets similar to the original data set (Gelman
et al. 1996). This allows us to reproduce the original variance of
the error (Fig. 13, left). Many Bayesian analyses often do not use
posterior predictive checks, like in the work of Zhang & Shields
(2018) and Jesus et al. (2018), where they used emcee for posterior
sampling, and instead using Bayesian and Akaike information
criteria along with Bayes factors for model assessment, but without
attempting to reproduce the original variance of the data. This is also
the case in other Bayesian tools like LINMIX (Kelly 2007), which is
widely used in astronomy for approximating unobserved data.

MNRAS 00, 1 (2019)
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Figure 10. Corner plot showing the EMCEE sampling of the posterior probability distribution (equation 8) for the linear Bayesian model parametersθθθ = (s, a, f )
based on errors estimated using method H for galaxies with more than 15 TF distance measurements. The dashed lines indicate the 16th, 50th, and 84th percentile
of the marginalized distribution of each parameter (shown at the top of each column), and the blue solid lines indicate the mean. This plot was made using the
CORNER PYTHON module.

First, we assume that for any galaxy j the distance error σ Dj is a
random normal variable, with variance σσ j and mean σ̂Dj ,

P (σDj |σ̂Dj , σσj ) = N (σ̂Dj , σ
2
σj ). (6)

Our likelihood function is the joint probability that each of the
σ D = {σ Dj} in the original data set of m galaxies is generated by
the above probability,

P (σD|σ̂D, σσ ) =
m∏
j

P (σDj |σ̂Dj , σσj ). (7)

We want to test the hypothesis mentioned above that all errors and
their variances (σ̂D = {σ̂Dj }, σσ = {σσj }) can be estimated from a
single model depending on the extragalactic distances DG = {DGj}
and a set of distance-independent parameters θθθ . Thus the likelihood
can be expressed as

P (σD|DG, θθθ ) =
m∏
j

P (σDj |DGj , θθθ ).

Following Bayes’ theorem we can compute the posterior probability
up to a constant,

P (θθθ |DG, σD) ∝ P (θθθ )P (σD|DG, θθθ ). (8)

Because of the simplicity of the models used here, we will only
use reasonably conservative (flat) priors on all model parameters,
which are described in the next subsection.

A common feature across our models is that σσ = f σ̂D, where
the error variance scale factor f is one of the parameters in θθθ . This
model choice is supported by Fig. 13 (left), which shows a roughly
linear correlation between estimated errors and their variances. On
the other hand, our models will differ by the proposed functional
forms of σ̂D(DG, θθθ ).

We obtain computationally credible samplings of the posterior
probability (equation 8) by removing the burn-in steps of the random
walk according to the autocorrelation time. We can then create
synthetic data sets by drawing a parameter sample θθθk from the
posterior and using it to draw from the likelihood to create a new
data set, i.e. drawing new σ Dj from the probability distribution
for all galaxies in the original data set using equation (6). We
then assess the validity of the model by comparing synthetic data
with the observed (i.e. original) data. This comparison is done by

MNRAS 00, 1 (2019)
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Figure 11. Corner plot showing the EMCEE sampling of the posterior probability distribution (equation 8) for the linear Bayesian model parametersθθθ = (s, a, f )
based on errors estimated using method M for galaxies with more than 13 TF distance measurements. The dashed lines indicate the 16th, 50th, and 84th percentile
of the marginalized distribution of each parameter (shown at the top of each column), and the blue solid lines indicate the mean. This plot was made using the
CORNER PYTHON module.

using a discrepancy measure D(σD|θθθk) between data and model-
derived expected values for the same data e = {ej (θθθk)}, where θ k is
drawn from the posterior distribution and σ D can be the observed
errors or the model-generated synthetic errors. The discrepancy can
be calculated using a statistic like χ2 (de la Horra 2008; de la
Horra & Teresa Rodriguez-Bernal 2012), but here we will work
with the Freeman–Tukey discrepancy since it is weight independent
(Brooks, Catchpole & Morgan 2000; Bishop, Fienberg & Holland
2007),

D(σD|θθθk) =
m∑
j

(√
σDj − √

ej (θθθk)
)2

.

For each parameter draw k, it is possible to compare the simulated
discrepancy with the observed discrepancy. If the model is represen-
tative of the data, then for many parameter draws, the simulated and
observed discrepancies should be similar. We can then calculate
a Bayesian ‘p-value’ as the ratio of ‘draws when the observed
discrepancies are larger than the synthetic discrepancies’ to ‘total
draws’. If this Bayesian p-value is too close to 0 or to 1 we can reject
the model, otherwise it is generating synthetic data that are similar
to the original data. This is better visualized using a discrepancy

plot, where for each draw k, a synthetic discrepancy is paired with
its corresponding observed discrepancy. If the discrepancy points
are roughly equally distributed about the Dobs = Dsim line, then
we cannot reject the model. As mentioned above, we expect that
galaxies with the largest number of measurements are sampling
more completely the ‘true’ distribution of the distance. Therefore,
we need to find the minimum number of measurements per galaxy
for which the Bayesian p-value shows an agreement between on the
partitioned data set and the model predictions.

4.1 Bayesian quadrature model

Our first model is based on the hypothesis that there are distinct
systematic and random contributions to the distance measurement
error, both of which are normally distributed. For this reason they
are added in quadrature,

σ 2
D = σ 2

s + σ 2
r . (9)

Here σ r is a random (constant) error and the systematic error is
modelled allowing for scale factor (s) and zero setting (a) errors, i.e.
σ s = sD + a, as Fig. 3 suggests. We set our prior to be symmetrical

MNRAS 00, 1 (2019)
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Figure 12. Projection of parameter set samples from the posterior probability distribution of the Bayesian linear model on to the σD versus DG scatter plot
for errors estimated using method H for galaxies with more than 15 TF distance measurements (left) and using method M for galaxies with more than 13 TF
distance measurements (right).

Figure 13. Variance of distance error estimates versus estimated extragalactic distance errors, showing linear regressions and confidence intervals computed
using the SEABORN.REGPLOT PYTHON function (left), and showing a projection of parameter set samples from the posterior probability distribution of the
Bayesian linear model (right) as determined by the H and M methods.

around σ r = 0 in order to better visualize its behaviour near this
point, so

P (s, a, σr, f ) ∝

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1, if 0 < s < 1 and

0 < a < 10 Mpc and

− 10 < σr < 10 Mpc and

0 < f < 1,

0, otherwise.

(10)

We now use EMCEE to sample the posterior over the parameter set
θθθ = (s, σr, f , a) using 100 walkers and 20 000 steps (t̄autocorr � 90
steps). According to the discrepancy plot in Fig. 5 (left), this

model is able to replicate method H errors for the 31 galaxies with
N > 25 measurements (866 measurements in total). The corner
plot showing the posterior sampling made by EMCEE is shown in
Fig. 6, which shows the 16th, 50th, and 84th percentiles of the
marginalized posterior distributions for the systematic scale factor
s, the random error component σ r, the error variance scale factor f,
and the zero offset systematic error a. From the large variance in the
marginalized posterior distribution for σ r and a, we see that there
is a significant degeneracy between those parameters. However, it
should be noted that the marginalized posterior distribution of σ r

is symmetric around zero (because of its own degeneracy), while
the distribution of a can only take positive values. The working

MNRAS 00, 1 (2019)
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Figure 14. Synthetic H method (left) and M method (right) σD and their median expected values versus DG for the 884 galaxies in NED-D for which no TF
distance measurements report an error, generated using the corresponding Bayesian linear model. Predicted errors for galaxies outside of the working distance
range of the model are plotted in black. H (left) and M (right) errors for galaxies with more than five TF measurements are also plotted for comparison.

Figure 15. Synthetic H method (left) and M method (right) σD and their median expected values versus DG for the 71 galaxies in HyperLEDA for which
no TF distance measurements report an error, generated using the corresponding Bayesian linear model. Predicted errors for galaxies outside of the working
distance range of the model are plotted in black. H errors for galaxies with more than two distance measurements are also plotted for comparison.

distance range and overall fitting of this model are shown in Fig. 8
(left), where method H errors corresponding to galaxies with more
than 25 TF distance measurements are plotted along the expected
values e = {ej (θθθk)} for parameter sets θθθk drawn from the posterior
probability distribution. Now we sample the posterior distribution
for the Bayesian quadrature model with method M errors using
EMCEE with 100 walkers and 20 000 steps s (t̄autocorr � 50 steps). The
discrepancy plot for method M errors in Fig. 5 (right) shows that the
quadrature model also replicates method M errors, but for the 732
galaxies with more than 13 measurements (13 054 measurements
in total). Fig. 7 shows that values for the random error component

σ r are so low that the model draws are almost indistinguishable
from straight lines in Fig. 8 (right). Additionally, and just as
for the quadrature model for H errors above, the symmetry of
the marginalized posterior distribution of σ r leads us to set this
parameter to zero in our next (linear) model.

4.2 Bayesian linear model

In Section 4.1 above we conclude that we can ignore the random
error component in equation (9) in order to work with a simpler,
numerically stable, linear model that only considers a systematic
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error with scale factor and zero setting error components,

σD = σs = sD + a. (11)

We also update our prior considering that the quadratic model
yielded lower values for the zero setting error a than previously
considered in equation (10),

P (s, a, f ) ∝

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1, if 0 < s < 1 and

0 < a < 2 Mpc and

0 < f < 1,

0, otherwise.

(12)

We use EMCEE to sample the posterior over θθθ = (s, a, f ) using 100
walkers and 10 000 steps (t̄autocorr < 50 steps) for the linear Bayesian
model applied to H errors. The discrepancy plot (Fig. 9, left) shows
a significant improvement over the quadratic model, as it shows an
acceptable Bayesian p-value for the 477 galaxies with N > 15 mea-
surements (9361 in total), whereas the quadratic model replicated
errors only for galaxies with N > 25 measurements. Fig. 10 shows
the 16th, 50th, and 84th percentiles of the marginalized posterior
distributions for the systematic scale factor s, the error variance scale
factor f, and the zero offset systematic error a for the linear Bayesian
model using H errors for galaxies with more than 15 measurements.
We sample the posterior for the linear model applied to M errors
using EMCEE with 100 walkers and 10 000 steps (t̄autocorr < 50 steps).
Fig. 9 (right) shows the corresponding discrepancy plot, which does
not show a significant improvement of the linear over the quadratic
model for M errors, as it also works for galaxies with N > 13
measurements. This happens because the sampling of the posterior
for the quadratic model (Fig. 7) does not show a degeneracy between
σ r and a, and also because the marginalized posterior distribution for
σ r is a near-zero-centred distribution with a variance of ∼0.2 Mpc.
The 16th, 50th, and 84th percentiles of the marginalized posterior
distributions for the systematic scale factor s, the error variance
scale factor f, and the zero offset systematic error a according the
linear model for M errors are shown in Fig. 11.

4.3 Predictions for missing errors

Our linear Bayesian model is able to predict the intrinsic variance
of TF H and M distance errors in NED-D by considering systematic
zero setting and scale factor error components. The lower limit
of distance measurements for which the model works for H and
M errors is 15 and 13, respectively.1 Fig. 12 shows the linear
model draws for H and M errors, for which the working range
is approximately DG ∈ [3, 140] Mpc. We also show in Fig. 13 that
the model draws for f the scale parameter for the variance of σ D fit
the bootstrap variance of H and M errors well, which means that
our model choice for the variance of the error (σσ ) was the right
one.

Now, galaxies for which the models shown above work are not
intrinsically different to other galaxies, as long as they are within
the same distance range. Thus, we use the posterior predictive
distribution of the linear Bayesian model for predicting H and M
errors for the 884 galaxies in NED-D for which all TF measurements
lack a reported error. Fig. 14 shows synthetic errors generated from
the posterior predictive distribution for the σ D linear model, along

1Our model validation has also worked with the two 2017 versions of the
NED-D extragalactic distance catalogue, albeit with different thresholds for
the number of measurements per galaxy.

with the expected values of σ D using the median of the posterior
probability distribution in equation (8), and the DG versus σ D points
for galaxies with more than five TF distance measurements (for
contrast) for methods H and M, respectively. The median expected
values are only drawn for points within the predictive range of each
model, and synthetic predicted errors for galaxies outside of this
range are plotted in black. The distance was calculated using the
median of the reported distances whenever there was more than one
TF distance measurement.

The HyperLEDA catalogue has distance measurements for 4224
galaxies, of which 1064 galaxies have reported measurements
without errors. Of these galaxies with unreported distance errors,
203 report measurements obtained with the TF method. We create
synthetic errors for these using our Bayesian predictive models for
H and M TF errors. Fig. 15 (left) shows that predicted H errors are
somewhat higher than those estimated for HyperLEDA, although
acceptably within the range. Fig. 15 (right) shows that predicted
M errors are even closer to the HyperLEDA M error estimates.
This outstanding result is an independent validation of our linear
Bayesian model for predicting TF distance errors, and its capacity
to estimate systematic effects of the TF distance determination
method.

This predictive model may work for other distance determination
methods, but a cursory overview of methods that require error
prediction due to missing errors [e.g. tip of the red giant branch
(TRGB), colour–magnitude diagram (CMD), eclipsing binary, red
clump, planetary nebulae luminosity function (PNLF), Sunyaev–
Zeldovich (SZ) effect, brightest stars, horizontal branch in NED-D]
suggests that such attempts need to be evaluated in a case-by-case
basis. For instance, in NED-D, FP measurements are by far the most
numerous (∼130 000 galaxies), but only 28 of those have more than
three FP distance measurements. We attempted to create a model
similar to what we did for TF, but we were only able to find a
working predictive model (i.e. yielding a good Bayesian p-value)
for the 16 galaxies with more than four distance measurements. The
comparatively low number of galaxies for which this model works
makes us wary of predicting FP errors, therefore we do not report
these results.

5 C O N C L U S I O N S

We propose methods for robustly estimating the uncertainty in ex-
tragalactic distances in multimeasurement, multimethod catalogues.
First we propose to report 16th, 50th, and 84th percentiles of
the bootstrap-sampled distance distribution for each galaxy. We
also propose the use of the half-distance between the 84th and
16th percentiles (method H), and the median absolute deviation
(method M) if the bootstrap-sampled distance distribution for each
galaxy as straightforward measures of the uncertainty in extragalac-
tic distances. Method H gives errors that faithfully measure the
variance of the distance probability distribution, whereas traditional
frequentist propagation-of-error methods fail to match this variance
measure. On the other hand, method M should be used whenever a
specific application requires to ignore outdated or possibly wrong
outliers.

We produce error data tables using the robust (H, M) and frequen-
tist (P, Q) methods for NED-D, HyperLEDA, and Cosmicflows-3,
along with the 16th, 50th, and 84th percentiles of the bootstrap-
sampled distance distribution for each galaxy in those catalogues.
These tables can be found in the repository for this paper, lo-
cated at http://github.com/saint-germain/errorpr
ediction. A description and analysis for each catalogue can be
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found in the Appendix. We consider that these error tables should
be a fundamental tool for future precision cosmology, catalogue-
wide studies, as it should be possible to quote errors according
to the method that the reader considers most relevant for specific
applications.

We create a Bayesian predictive model for TF distance errors
in the NED-D catalogue based on a Bayesian analysis of the
systematic and random components in distance errors. We perform
a posterior predictive check in the form of the computation of a
Bayesian p-value based on simulated versus observed discrepancies
measured with the Freeman–Tukey statistic. Thus we create models
that can reproduce the intrinsic variance of distance errors along
with systematic zero-setting and scale factor components from
the posterior predictive distribution of the models, using NED-D
estimated H and M errors.

We use these models to predict H and M errors for 884 galaxies in
NED-D that report TF distance measurements but do not report mea-
surement errors. Our predictive models are independently validated
against the HyperLEDA catalogue by the agreement between our
pre-computed H and M errors and our predictions for 203 galaxies
in HyperLEDA with non-reported TF errors. Similar Bayesian
predictive methods can be set up for other distance determination
methods but with caveats, as model validation works better for
methods for which there are many galaxies with a high number of
distance measurements.

Finally, we want to advocate for the widespread use of discrep-
ancy plots and their derived Bayesian p-values for Bayesian model
checking in astronomy, as inference is based on the model’s ability
to reproduce the original distribution of the data and not only on a
relative comparison to other models.
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APPENDI X A : PRE-COMPUTED D I STA NCE
ERRO R DATA TABLES

We estimated errors for the HyperLEDA, Cosmicflows-3, and NED-
D redshift-independent extragalactic distance data bases using the
methods described in Section 3 across all distance determination
methods, only considering measurements with more than two
reported errors. Our pre-computed distance error tables can be found
in the repository for this paper athttp://github.com/saint
-germain/errorprediction. The fields included for each
catalogue are:

(i) meas – Number of distance measurements.
(ii) D (Mpc) – This is the median of the posterior distribution

of the corresponding extragalactic distance.
(iii) Dmin (Mpc) – This is the 16th percentile of the posterior

distribution of the corresponding extragalactic distance.
(iv) Dmin (Mpc) – This is the 84th percentile of the posterior

distribution of the corresponding extragalactic distance.
(v) H (Mpc) – Error estimated using the H method (Dmax-

Dmin)/2.
(vi) M (Mpc) – Error estimated using the M method.
(vii) P (Mpc) – Error estimated using the P method.
(viii) Q (Mpc) – Error estimated using the Q method.
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Figure A1. Estimated extragalactic distance errors versus median extragalactic distance for galaxies with N = 2 (left) and N > 2 (right) redshift-independent
distance measurements in HyperLEDA according to the H, M, Q, and P error models, showing a linear regression and confidence intervals computed using the
SEABORN.REGPLOT PYTHON function.

Figure A2. Estimated extragalactic distance errors versus median extragalactic distance for galaxies with N = 2 (left) and N > 2 (right) redshift-independent
distance measurements in Cosmicflows-3 according to the H, M, Q, and P error models, showing a linear regression and confidence intervals computed using
the SEABORN.REGPLOT PYTHON function.

A1 Estimation of errors for HyperLEDA

As expected from our analysis of TF errors in NED-D, errors
calculated with methods P, Q, and M overpredict the error with
respect to the H method for galaxies with a low number of distance
measurements (N = 2), as shown in Fig. A1 (left). Fig. A1
(right) shows that for galaxies with a higher number of distance
measurements, the P method significantly underpredicts the error
with respect to the other methods. Even though the H and Q methods
show a similar trend, the variance of Q errors around this trend is
higher than for H methods. Errors obtained with method M are
lower, due to the method’s intrinsic robustness. These estimations
are reported in the file called hl bootstrap results.csv in
the repository. Special fields for this catalogue are:

(i) objname – Object name according to the HyperLEDA data
base.

(ii) j2000 – J2000 coordinates.

A2 Estimation of errors for Cosmicflows-3

The Extragalactic Distance Database (EDD) of Cosmicflows-3,
which has the most up-to-date calibrated distance measurements
using the TF, FP, and SNIa methods for more than 17 000 galaxies.
We estimated errors for the approximately 10 per cent of them that
have more than one reported distance, using the methods described
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in Section 3. Fig. A2 shows that the P method, which is the suggested
method in Tully et al. (2016), overpredicts errors with respect
to the H method for galaxies with two distance measurements,
as was the case for the errors of HyperLEDA. For galaxies with
more than two distance measurements, Fig. A2 shows that the
P method underpredicts the errors with respect to the H method.
Even though the M, H, and Q methods show a similar trend with
distance, the Q method has a significantly larger scatter around this
trend. We compiled the estimated errors in a companion table to
the Cosmicflows-3 EDD data base and in a similar format, in the
file called cf3 bootstrap results.csv in the repository for
this work. Special fields for this catalogue are:

(i) pgc – Principal Galaxies Catalogue ID number.
(ii) Name – Object name according to the Cosmicflows-3 data

base, where available.

A3 Estimation of errors for NED-D

The 2018 version of the NASA/IPAC extragalactic distance cat-
alogue NED-D has ∼300 000 redshift-independent distance mea-
surements with reported errors for ∼180 000 galaxies. We estimated
the errors for the ∼16 000 galaxies with more than one distance
measurement. The data base of errors for NED-D is in the file
called ned bootstrap results.csv. The only special field
for this catalogue is

(i) Galaxy ID – Object name according to the NED-D data
base.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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galaxies: star formation
galaxies: statistics
galaxies: stellar content
galaxies: structure

Cosmology
(cosmology:) cosmic background radiation
(cosmology:) cosmological parameters
(cosmology:) dark ages, reionization, first stars

(cosmology:) dark energy
(cosmology:) dark matter
(cosmology:) diffuse radiation
(cosmology:) distance scale
(cosmology:) early Universe
(cosmology:) inflation
(cosmology:) large-scale structure of Universe
cosmology: miscellaneous
cosmology: observations
(cosmology:) primordial nucleosynthesis
cosmology: theory

Resolved and unresolved sources as a function of 
wavelength
gamma-rays: diffuse background
gamma-rays: galaxies
gamma-rays: galaxies: clusters
gamma-rays: general
gamma-rays: ISM
gamma-rays: stars
infrared: diffuse background
infrared: galaxies
infrared: general
infrared: ISM
infrared: planetary systems
infrared: stars
radio continuum: galaxies
radio continuum: general
radio continuum: ISM
radio continuum: planetary systems
radio continuum: stars
radio continuum:  transients
radio lines: galaxies
radio lines: general
radio lines: ISM
radio lines: planetary systems
radio lines: stars
submillimetre: diffuse background
submillimetre: galaxies
submillimetre: general
submillimetre: ISM
submillimetre: planetary systems
submillimetre: stars
ultraviolet: galaxies

ultraviolet: general
ultraviolet: ISM
ultraviolet: planetary systems
ultraviolet: stars
X-rays: binaries
X-rays: bursts
X-rays: diffuse background
X-rays: galaxies
X-rays: galaxies: clusters
X-rays: general
X-rays: individual: . . .
X-rays: ISM
X-rays: stars


