

Searching for Dark Matter and Heavy Neutral Leptons with the ATLAS detector

Prof. Gabriela Navarro Universidad Antonio Nariño

MOCA2019: Materia Oscura en Colombia September 30th 2019

Outline

- ✓ Motivation
- ✓ LHC
- ✓ The ATLAS detector
- ✓ Some Dark matter searches
- ✓ Heavy neutral Lepton searches
- ✓Conclusions

Motivation

While the Standard Model is in excellent agreement with the LHC

measurements

Motivation

Heavy Neutral Leptons linked to neutrino masses Heavy vector Bosons W', Z'

With 13 TeV energy in the c.m. , the LHC offers the best scenario for searching a large variety of signals.

The ATLAS detector

Dark Matter searches

Dark Matter Models

 Simplified models: a new particle (or particles) mediates the interaction of DM and SM particles.

X + MET

Deviation from SM background

Resonances

Looking for a bump coming from mediators decaying to fermions

Higgs as mediator

Looking for an enhancement of Higgs to invisible

ATLAS Dark Matter searches: X + MET

Invisible final state requires additional particles from ISR or associated production.

DM becomes visible as ETmiss

9

PATLAS Dark Matter searches: Jet + E_TMiss

 g_{χ}

Search for events containing an energetic jet and large missing o_{I} (2018) I_{26} transverse energy.

- ✓ <u>Signal model:</u>
 - Simplified DM models: a new particle mediates the interaction of DM with SM particles.

 g_q

 Z_A

- Dirac fermions WIMPs (χ) are pair-produced from quarks via schannel exchange of:
 - Spin-1 mediator $Z_{\!A}$ with axial-vector coupling or
 - Spin-1 mediator $Z_{\boldsymbol{V}}$ with vector coupling or
 - Spin-O pseudo scalar Z_P
- Free parameters:

 $m_{\chi}, (m_{Z_A} orm_{Z_V} orm_{Z_P}), g_q, g_{\chi}$

Dark Matter searches: Jet + ETMiss

- JHEP F~369572018) 126 <u>Dataset:</u> pp collisions recorded during 2015-2016, integrated luminosity of
- Event selection:
 - Energetic Jet p_T > 250 GeV, E_T^{Miss} > 250 GeV, maximum of four jets with p_T > 30 GeV ► and no leptons.
- Backgrounds:
 - W+jets, Z+jets, top-quark related backgrounds -> estimated with MC samples
 - Diboson (WW/WZ/ZZ) -> estimated from MC samples. ►
 - Multijets extracted from data.

ATLAS Dark Matter searches: Jet + E_T^{Miss}

<u>Interpretation in DM</u> <u>production via an axial mediator</u>

95% CL exclusion contours in the

 $m_{ZA} - m_{\chi}$ parameter plane for a simplified model with an axial-vector mediator.

In the on-shell regime, models with mediator masses up to 1.55 TeV are excluded for mx = 1 GeV.

SATLAS Dark Matter searches: h(bb) + MET

- Search for DM produced in association with a Higgs boson h, with h decaying into two b-quarks (most frequent decay, BR of 57%)
- ✓ <u>Signal model</u>: 2HDM type-II with an additional $U(1)_{Z'}$ gauge symmetry.
- Among five physical Higgs boson:
- Light scalar h -> SM Higgs boson
- Pseudo-scalar A, which decays to a pair $\chi \overline{\chi}$
- ✓ <u>Model parameters</u>:
- $\underline{m}_A, \underline{m}'_Z, \underline{m}_\chi$
- Gauge coupling of Z'

 $tan\beta$: ratio of the vacuum expectation values

of the two Higgs fields coupling to the up- and down-type quarks

- ATLAS Dark Matter searches: h(bb) + MET
- <u>Dataset</u>: pp collisions recorded during 2015-2017, integrated luminosity of ~ 80 fb⁻¹.
- ✓ Event selection SR
- $\underline{E_T^{Miss}} > 150$ GeV, no leptons
- Use Variable Radius track jets (VR) for jet reconstruction
- To suppress multijet background -> azimuthal angle between E_T^{Miss} and any of three highest-pT jets > 20°.
- Events are divided into:
- resolved regions with $E_T^{Miss} < 500 \text{ GeV}$

Exactly two of the jets are required to be b-tagged

Presence of at least one large-R jet. 14

• merged region with $E_T^{Miss} > 500 \text{ GeV}$

ATLAS Dark Matter searches: h(bb) + MET

✓ <u>Background sources</u>

- Main: W+jets, $t\bar{t}$, $Z(\nu\nu)$ +jets -> estimated through data control samples.
- Subdominant: multijets originated from pure strong interactions in the resolved SR (negligible in the merged SR) -> estimated with data-driven method
- <u>Discriminating variable</u>: mass of the Higgs boson candidate m_h
- Resolved SR: dijet invariant mass m_{jj}
 of the two leading small-R jets
- merged region : leading large-R jet mass m_j.

SATLAS Dark Matter searches: h(bb) + MET

✓ Exclusion contour in the (m_{Z'}, m_A) space in the Z'-2HDM scenario for

• $tan\beta = 1$

- $g_{Z'} = 0.8$
- $m_{\chi} = 100 \text{ GeV}$
- Observed limits are consistent with the expectation under SMonly hypothesis within uncertainties.

Improvement from using VR track jets

PATLAS Dark Matter: Resonances

JHEPO5 (2019) ✓ Several searches for narrow resonances are interpreted in terms of 142 DM models

✓ Several final-state signatures which select different visible particles.

Analysis	Models targeted	Final-state signature	
Dijet [186]	V/AV	2 jets, m_{jj} , y^* .	
Dijet angular [186]	V/AV	2 jets, m_{jj} , y^* .	
TLA dijet $[190]$	V/AV	2 trigger-level jets, m_{jj} , y^* .	
Resolved dijet+ISR [191]	V/AV	3 jets (or 2 jets and 1 photon), m_{jj} , y^* .	
Boosted dijet+ISR [192]	V/AV(*)	1 large- R jet, 1 jet or photon, m_J .	
Dibjet [194]	V/AV	2 jets (1 and 2 <i>b</i> -jets), m_{jj} , y^* .	
Dilepton [195]	V/AV	$2 e \text{ or } 2 \mu.$	
Same-sign tt [106]	VFC	2 same-sign ℓ , 2 <i>b</i> -jets, $H_{\rm T}$, $E_{\rm T}^{\rm miss}$.	
$t\bar{t}$ resonance [196]	V/AV	1 ℓ , hadronic t candidate (resolved and boosted topologies), $E_{\rm T}^{\rm miss}$.	
$t\bar{t}t\bar{t}$ [197]	$_{2\text{HDM}+a}$	1 ℓ , high jet multiplicity.	

17

- Search for a new resonant state decaying to two jets :
 - Excess in the distribution of the dijet invariant mass m_{jj} localized near the mass of the resonance.

18

JHEP05 (2019) 142

- ✓ <u>Dataset:</u> pp collisions recorded during 2015-2016, integrated luminosity of ~ 37 fb⁻¹.
- Event Selection:
 - Events with at least two small-R jets with $p_T > 440(60)$ GeV for leading (subleading) jets.
 - Rapidity difference |y*|< 0.6 (reduces the QCD background)</p>
 - Invariant mass of dijet m_{ii} > 1.1 TeV
- Backgrounds:
 - Multijet production described by QCD -> estimated from MC simulations for the angular distributions and from data for the invariant mass distribution.

Dark Matter: Dijet

✓ Dijet search contours for 95% CL upper limits on the coupling g_a as a function of resonance mass $m_{Z'_A}$.

✓ Each resonance search analysis is sensitive to complementary regions of masscoupling parameter space.

 Couplings above exclusion lines are excluded.

CATLAS Dark Matter: Higgs to invisible

- ✓ 125 GeV Higgs boson H acts as portal between a dark sector and the SM sector
- ✓ Decays of H to DM particles represent a distinct signature in these models -> indirectly inferred through E_T^{Miss} (invisible).
- ✓ Different topologies assuming SM production rates:

 Comparison of the upper limits at 90% CL from direct detection experiments on Wimpnucleon scattering cross section to this analysis observed exclusion limits.

- ✓ The excluded σ_{WIMP-N} values range down to 2 x 10⁻⁴⁵cm² in the scalar scenario.
- ✓ In the fermion WIMP case, σ_{WIMP-N} values down 10⁻⁴⁶ cm² are excluded.

Heavy neutrinos

- \checkmark Neutrinos in the SM are massless.
- Neutrino oscillation observations show that they have non-zero masses
 -> neutrinos are "light" with masses < 1 eV (compared to the other massive fundamental particles).
- See-saw mechanism can explain the small neutrino masses:
 - Idea: introduce right-handed neutrinos in the Standard Model which have very heavy masses.
 - A left-handed neutrino converses spontaneously in the right-handed for a brief moment, before reverting back to being a left-handed neutrino again.

- ✓ Type-1 Seesaw mechanism
 - Introduce right-handed neutrinos (Majorana-type) into the SM with heavy masses.

$$L_Y = H_{\nu}\overline{L}HN_R + M_RNN$$
$$m_{\nu} \sim -\frac{h_{\nu}^2 < \phi >^2}{M_R}$$

 HNL could generate the observed amount of baryon asymmetry through leptogenesis and would be a valid dark-matter candidate.

Heavy neutrinos

- HNL masses > 5 GeV can be accessed directly through the decays of W, Z or H bosons.
- This search: W bosons exclusively decaying into a muon or electron and an HLN
- Two distinct experimental signatures have been designed to probe both short or long HNL lifetimes:
 - Prompt signature: three leptons originating from the interaction point (IP), two muons and an electron or two electrons and one muon, with same flavor leptons of same charge.
 - Displaced signature: prompt muon accompanied by a vertex significantly displaced from IP, formed by either two muons or a muon and an electron.

S Heavy neutrinos

Signal Model

✓ <u>HNL production</u>

Accepted by JHEP

$$\sigma(pp \to W) \cdot B(W \to \ell N) = \sigma(pp \to W)B(W \to \ell \nu) \cdot |U^2| (1 - \frac{m_N^2}{m_W^2})^2 (1 + \frac{m_N^2}{m_W^2})$$

✓ <u>HNL decay</u>

HNL lifetime τ_N is dependent on the coupling strength $\mid U^2 \mid$ and the mass m_N

$$\tau_N = \frac{n}{\Gamma} \qquad \qquad \Gamma = \Sigma_i \Gamma_i(m_N, |U^2|) \quad \text{total width}$$

✓ <u>In this search:</u>

 $4.5 GeV < m_N < 50 GeV$ $c\tau = 0.001, 0.01, 0.1, 1, 10 \text{ or } 100 \text{ mm}$ v length

Mean proper decay length

Prompt Signature

Search conducted in two channels:

 $W^{\pm} \rightarrow \mu^{\pm} \mu^{\pm} e^{\mp} \nu_e$ (muon channel) and $W^{\pm} \rightarrow e^{\pm} e^{\pm} \mu^{\mp} \nu_{\mu}$ (electron channel)

✓ Selection:

Muon channel	Electron channel				
exactly $\mu^{\pm}\mu^{\pm}e^{\mp}$ signature	exactly $e^{\pm}e^{\pm}\mu^{\mp}$ signature				
$p_{\rm T}(\mu) > 4 { m GeV}$ $p_{\rm T}(e) > 7 { m GeV}$ (2015), 4.5 GeV (2016)					
leading muon $p_{\rm T} > 23 \text{GeV}$ subleading muon $p_{\rm T} > 14 \text{GeV}$	leading electron $p_{\rm T} > 27 {\rm GeV}$ subleading electron $p_{\rm T} > 10 {\rm GeV}$ $m(e, e) < 78 {\rm GeV}$				
$40 < m(\ell, \ell, \ell') < 90 \text{GeV}$					
$E_{\rm T}^{\rm miss} < 60 {\rm GeV}$					

Table 1: Signal region selection criteria for the prompt trilepton analysis.

ATLAS Heavy neutral leptons

Prompt Signature

- Backgrounds:
 - Irreducible: exactly three leptons (diboson, triboson, $t\bar{t}V$) -> negligible due to small cross sections -> estimated from MC simulations.
 - Reducible: events with fake leptons (semi-leptonic decays of b(c)-hadrons, photon conversions ...).

Large fraction comes from W+jets and multijets events (multi-fake) -> estimated from data.

 $t\bar{t}$ estimated from data.

Z+jets and single-top-quark estimated from MC simulations.

Heavy neutral leptons

Displaced-vertex Signature

- ✓ For $m_N \le 20$ GeV -> HNL lifetime gets longer -> DV is needed to explore these regions.
- Search for a prompt isolated muon accompanied by a DV formed by either two muons or a muon and an electron.
- V can be reconstructed at radial distances up to ~ 300 mm due to the application of "large radius tracking (LRT) algorithm"
- Selection: first applied a pre-selection and then LRT algorithm.
- Presence of at least two muons.
- The first muon is required to have an ID track matched to an MS track segment, with $p_T > 28 GeV.$
- The displaced muon candidate must have:
 - MS track which either has no matched track in the ID or
 - if it has a match track -> $d_0 > 0.1mm$

 $p_T > 5 GeV$

- Displaced-vertex Signature
- Backgrounds:

- Sources of two-track DVs include:
 - * hadronic interactions in material,
 - * decays of metastable particles (b-hadron, s-hadron), accidental crossings of charged particles,
 - * cosmic-rays muons crossing charged particle or reconstructed as two back-to-back muons.

Other sources: dijets and W+jets -> estimated with data-driven.

Heavy neutral leptons

<u>Sults</u> Accepted by JHEP Observation in the signal regions are consistent with background expectations in both signatures.

Results

Limits from prompt signature cover the mass range 5-50 GeV. For m_N between 20-30 GeV mass -> regions in $|U^2|$ above 1.4 x 10⁻⁵ excluded.

Limits from DV signature cover the mass range 4.5-10 GeV, in which they exclude coupling strengths down to ~ 2 x 10-6

ATLAS Heavy neutral leptons

- Other searches
- 13 TeV results
- Search for RH-gauge bosons decaying into heavy neutrinos and a charged lepton -> Left-Right symmetric Models <u>Phys. Lett. B 798 (2019) 134942</u>
- Search for Heavy Majorana o Dirac neutrinos and RH-gauge bosons with final states with two charged leptons and two jets -> Left-Right Symmetric Models <u>JHEP 01 (2019) 016</u>
- 8 TeV results
- Search for type-III heavy leptons in llqq final state Phys. Rev. D 92 (2015) 032001
- Search for type-III heavy leptons in III final state. JHEP09(2015)108

Conclusions

- / The LHC searches are complementary to direct searches, providing improved sensitivity to low DM masses.
- ATLAS has a diverse program in DM searches:
 - Complementarity in different final states.
 - Wide program of searches in Supersymmetry (not discussed in this talk)
- None of the DM searches have observed a significant excess over expected backgrounds.
- ATLAS has performed different searches of Heavy Neutral Leptons, which if stable, could be a valid DM candidate.
- ✓ None of the HNL searches have observed a significant excess over expected backgrounds. Exclusion Limits in |U²|vs m_N have been set and they improve former searches.
- Many searches in progress for the full Run 2

Stay tuned ...

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/ExoticsPublicResults

Backup Slides

The ATLAS detector

44m

The ATLAS detector

44m 25m Tile calorimeters LAr hadronic end-cap and forward calorimeters **Electromagnetic Calorimeter** gnetic calorimeters **Pb-liquid Ar Accordion** er Identification and measurement of photon and electrons energy.

The Atlas detector

The Atlas detector

42

Trigger and Data acquisition (TDAQ) system Of the ATLAS **Detector for** "Run 2"

FE

ROD

CATLAS Dark Matter: Higgs to invisible

- ✓ 125 GeV Higgs boson H acts as portal between a dark sector Randethe SM sector.
- ✓ Decays of H to DM particles represent a distinct signature in these models -> indirectly inferred through E_T^{Miss} (invisible).
- ✓ Different topologies assuming SM production rates:

- For Two jets leading in p_T separated in $|\Delta \eta_{ii}| > 4.8$
- No additional jets with $p_T > 25$ GeV, no isolated electrons or muons with $p_T > 7$ GeV (reduce background from V+ jets.

Backgrounds:

• Dominant Z($\nu\nu$)+ jets and W(l ν) + jets (lepton not detected)

Dark Matter: Higgs to invisible

- <u>Z(lep)H topology</u>: Z decays to leptons **Event Selection:**
- E_T^{Miss} > 90 GeV and E_T^{Miss}/H_T > 0.6

- Exactly one pair of isolated electrons or muons with an invariant mass that is consistent with Z boson.
- Dilepton system aligned back-to-back to the E_T^{Miss} vector (reduce Z+jets)
- B-jets vetoed to reduce backgrounds from top quark pair production and Wtop.

Backgrounds:

- Irreducible $Z(\nu\nu)Z(II)$ estimated from MC simulations.
- $W(I\nu)Z(II)$ predicted by MC simulations and Z+jets estimated with data driven method.

ATLAS Dark Matter: Higgs to invisible

- Different topologies assuming SM production rates
- V(had)H topology: W or Z decay hadronically
- Event Selection:
- E_T^{Miss} trigger and no isolated lepton with $p_T > 7 \text{ GeV}$
- V is boosted -> jets are collimated -> two different regions.
- "merged": E_T^{Miss} > 250 GeV and has at least one large-R jet.
- "resolved": E_T^{Miss} > 150 GeV and has at least two small-R jets. Backgrounds:
- Main: V+jets and $t\bar{t}$ -> estimated from MC simulations.

Two Higgs Doublet Model(2HDM)

BSM Higgs

- Addition of a second Higgs complex doublet: $\phi_1 \& \phi_2$
- If the potential conserves CP symmetry -> <u>5 Higgs Bosons</u>:
 - Two scalar fields with CP even h y H
 - One pseudo-scalar field with CP odd
 A
 - Two charged fields H[±].
- Model parameters
 - **m**H, **m**h, **m**A, **m**H[±]
 - α : rotation angle that diagonalizes the square of the scalar field mass matrix
 - $tan \beta$: ratio between the vacuum expectation values of the scalar fields.

Types

- Type-I: all quarks couple with ϕ_2 .
- Type-II: RH up-quarks couple with φ₂ and RH down-quarks couple with φ₁.
- Lepton-specific: ϕ_1 couples to leptons and ϕ_2 to quarks.
- Flipped: like type-II but leptons couple to ϕ_2 .

ATLAS EXPERIMENT Variable-radius track jets

Reconstructed from inner detector using anti-kt algorithm. ✓ Main feature: pt dependence of the jet radius: $R \to R_{eff}(p_T) \sim \frac{p}{r}$ p_t Two other parameters: R_{min} and $R_{max} \rightarrow$ lower and uppercut on jet radius.

ATLAS Exotics Searches* - 95% CL Upper Exclusion Limits

Status: May 2019

 $\int \mathcal{L} dt = (3.2 - 139) \text{ fb}^{-1}$ $\sqrt{s} = 8, 13 \text{ TeV}$

_	Model ℓ, γ Jets† E_T^{miss}	∫£ dt[fb	- ¹] Limit	,	Reference
Extra dimensions	$ \begin{array}{llllllllllllllllllllllllllllllllllll$	36.1 36.7 37.0 3.2 3.6 36.7 36.1 139 36.1 36.1	Mp 7.7 TeV Ms 8.6 TeV Mith 8.9 TeV Mth 8.2 TeV Mth 9.55 TeV GKK mass 2.3 TeV GKK mass 1.6 TeV SKK mass 3.8 TeV KK mass 1.8 TeV	$\begin{array}{l} n=2 \\ n=3 \; \text{HLZ NLO} \\ n=6 \\ n=6, \; M_D=3 \; \text{TeV, rot BH} \\ n=6, \; M_D=3 \; \text{TeV, rot BH} \\ k/\overline{M}_{PI}=0.1 \\ k/\overline{M}_{PI}=1.0 \\ k/\overline{M}_{PI}=1.0 \\ \Gamma/m=15\% \\ \text{Tier (1,1), } \mathcal{B}(A^{(1,1)} \to tt)=1 \end{array}$	1711.03301 1707.04147 1703.09127 1606.02265 1512.02586 1707.04147 1808.02380 ATLAS-CONF-2019-003 1804.10823 1803.09678
Gaude bosons	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	139 36.1 36.1 139 36.1 139 36.1 36.1 36.1 80	Z' mass 5.1 TeV Z' mass 2.42 TeV Z' mass 2.1 TeV Z' mass 3.0 TeV W' mass 6.0 TeV W' mass 3.7 TeV V' mass 3.6 TeV V' mass 2.93 TeV W _R mass 3.25 TeV W _R mass 5.0 TeV	$\Gamma/m = 1\%$ $g_V = 3$ $g_V = 3$ $m(N_R) = 0.5$ TeV, $g_L = g_R$	1903.06248 1709.07242 1805.09299 1804.10823 CERN-EP-2019-100 1801.06992 ATLAS-CONF-2019-003 1712.06518 1807.10473 1904.12679
0	$ \begin{array}{c} CIqqqq & - & 2j & - \\ CI\ell\ell qq & & 2e,\mu & - & - \\ CItttt & & \geq 1e,\mu & \geq 1b,\geq 1j & Yes \end{array} $	37.0 36.1 36.1	Λ Λ Λ 2.57 TeV	21.8 TeV η_{LL}^- 40.0 TeV η_{LL}^- $ C_{4t} = 4\pi$	1703.09127 1707.02424 1811.02305
MO	Axial-vector mediator (Dirac DM) $0 e, \mu$ $1-4j$ YesColored scalar mediator (Dirac DM) $0 e, \mu$ $1-4j$ Yes $VV_{\chi\chi}$ EFT (Dirac DM) $0 e, \mu$ $1 J, \leq 1j$ YesScalar reson. $\phi \rightarrow t\chi$ (Dirac DM) $0-1 e, \mu$ $1 b, 0-1 J$ Yes	36.1 36.1 3.2 36.1	mmed 1.55 TeV mmed 1.67 TeV M, 700 GeV m≠ 3.4 TeV	g_q =0.25, g_{χ} =1.0, $m(\chi) = 1$ GeV g =1.0, $m(\chi) = 1$ GeV $m(\chi) < 150$ GeV $\gamma = 0.4, \lambda = 0.2, m(\chi) = 10$ GeV	1711.03301 1711.03301 1608.02372 1812.09743
01	$ \begin{array}{llllllllllllllllllllllllllllllllllll$	36.1 36.1 36.1 36.1	LQ mass 1.4 TeV LQ mass 1.56 TeV LQ ^u _u mass 1.03 TeV LQ ^u _u mass 970 GeV	$\begin{split} \beta &= 1 \\ \beta &= 1 \\ \mathcal{B}(\mathrm{LQ}_3^u \to b\tau) &= 1 \\ \mathcal{B}(\mathrm{LQ}_3^d \to t\tau) &= 0 \end{split}$	1902.00377 1902.00377 1902.08103 1902.08103
Heavy	$ \begin{array}{lll} & VLQ\;TT \to Ht/Zt/Wb + X & \text{multi-channel} \\ & VLQ\;BB \to Wt/Zb + X & \text{multi-channel} \\ & VLQ\;BS \to Wt/Zb + X & 2(SS) \geq 3 \; e, \mu \geq 1 \; b, \geq 1 \; j & \text{Yes} \\ & VLQ\;Y \to Wb + X & 1 \; e, \mu & \geq 1 \; b, \geq 1 \; j & \text{Yes} \\ & VLQ\;QQ \to WqWq & 1 \; e, \mu & \geq 4 \; j & \text{Yes} \end{array} $	36.1 36.1 36.1 36.1 79.8 20.3	T mass 1.37 TeV B mass 1.34 TeV Ts ₁₃ mass 1.64 TeV Y mass 1.85 TeV B mass 1.21 TeV Q mass 690 GeV	SU(2) doublet SU(2) doublet $\mathcal{B}(T_{5/3} \rightarrow Wt) = 1, c(T_{5/3}Wt) = 1$ $\mathcal{B}(Y \rightarrow Wb) = 1, c_R(Wb) = 1$ $k_B = 0.5$	1808.02343 1808.02343 1807.11883 1812.07343 ATLAS-CONF-2018-024 1509.04261
Excited	SolutionExcited quark $q^* \rightarrow qg$ -2 j-Excited quark $q^* \rightarrow q\gamma$ 1 γ 1 j-Excited quark $b^* \rightarrow bg$ -1 b, 1 j-Excited lepton ℓ^* 3 e, μ Excited lepton v^* 3 e, μ, τ -	139 36.7 36.1 20.3 20.3	q* mass 6.7 TeV q* mass 5.3 TeV b* mass 2.6 TeV /* mass 3.0 TeV v* mass 1.6 TeV	only u^* and d^* , $\Lambda = m(q^*)$ only u^* and d^* , $\Lambda = m(q^*)$ $\Lambda = 3.0$ TeV $\Lambda = 1.6$ TeV	ATLAS-CONF-2019-007 1709.10440 1805.09299 1411.2921 1411.2921
	Type III Seesaw1 $e, \mu \ge 2 j$ YesLRSM Majorana ν 2 μ 2 j	79.8 36.1	N ^e mass 560 GeV N _R mass 3.2 TeV	$m(W_R)=4.1$ TeV, $g_L=g_R$	ATLAS-CONF-2018-020 1809.11105
Other	Higgs triplet $H^{\pm\pm} \rightarrow \ell\tau$ 2,3,4 e, μ (SS) - - Higgs triplet $H^{\pm\pm} \rightarrow \ell\tau$ 3 e, μ, τ - - Multi-charged particles - - - Magnetic monopoles - - -	36.1 20.3 36.1 34.4	H** mass 8/U GeV H** mass 400 GeV multi-charged particle mass 1.22 TeV monopole mass 2.37 TeV	DY production DY production, $\mathcal{B}(H_L^{\pm\pm} \to \ell \tau) = 1$ DY production, $ q = 5e$ DY production, $ g = 1g_D$, spin 1/2	1710.09748 1411.2921 1812.03673 1905.10130
	$\sqrt{s} = 8$ TeV $\sqrt{s} = 13$ TeV partial data full data		10 ⁻¹ 1 10	Mass scale [TeV]	

*Only a selection of the available mass limits on new states or phenomena is shown.

†Small-radius (large-radius) jets are denoted by the letter j (J).

 $N_{exp} = \sigma_{exp} \times \left| \mathscr{L}(t) dt \right|$

 $\mathscr{L} = f_{coll} \frac{n_1 n_2}{4\pi \sigma_x^* \sigma_y^*}$

50

Calorimeter towers

Upgrade phase 1

<u>Phase 1</u>

- New muon small wheel
 - Has to be replace because of new conditions of Run III
- New trigger Schemes :
 - FTK ->track finding and fitting done at hardware level -> fast (latency less than 100µs for input rates up to 100 kHz).
 - Tracks will be available at the beginning of L2 -> less load on L2.

Phase 2

New inner detector.

Calorimeter and trigger upgrades.

Prospects for new colliders

	FCC-cc	CEPC	ILC	CLIC		
Species	e^+e^-	e^+e^-	e^+e^-	e^+e^-		
Beam energy (GeV)	46, 120, 183	46, 120	125, 250	190, 1500		
Circumference / Length (km)	97.75	100	20.5, 31	11, 50		
Interaction regions	2	2	1	1		
Estimated integrated luminosity per exp. (ab ⁻¹ /year)	26, 0.9, 0.17	4, 0.4	0.2, 0.2	0.2, 0.6		
Peak luminosity $(10^{34}~{\rm cm}^{-2}~{\rm s}^{-1})$	200, 7, 1.5	32, 3	1.4, 1.8	1.5, 6		
Time between collisions (μs)	0.015, 0.75, 8.5	0.025, 0.68	0.55	0.0005		
Energy spread (rms, 10^{-3})	1.3, 1.65, 2.0	0.4, 1.0	e^- : 1.9, 1.2 e^+ : 1.5, 0.7	3.5		
Bunch length (rms, mm)	12.1, 5.3, 3.8	8.5, 3.3	0.3	0.09, 0.044		
IP beam size (μm)	H: 6.3, 14, 38 V: 0.03, 0.04, 0.07	H: 5.9, 21 V: 0.04, 0.07	H: 0.52, 0.47 V: 0.008, 0.006	H: 0.15, 0.04 V: 0.003, 0.001		
Injection energy (GeV)	on energy (topping off)	on energy (topping off)	5.0 (linac)	9.0 (linac)		
Transv. geom. emittance (rms, pm)	H: 270, 630, 1340 V: 1, 1, 3	$\begin{array}{cccc} H: \ 170, \ 1210 \\ V: \ 2, \ 3 \end{array}$	H: 20, 10 V: 0.14, 0.07	H: 2.4, 0.22 V: 0.08, 0.01		
β^{\star} at interaction point (cm)	H: 15, 30, 100 V: 0.08, 0.1, 0.16	$\begin{array}{llllllllllllllllllllllllllllllllllll$	H: 1.3, 2.2 V: 0.041, 0.048	H: 0.8, 0.69 V: 0.01, 6.8×10^{-3}		
Full crossing angle (mrad)	30	33	14	20		
Crossing scheme	crab waist	crab waist	crab crossing	crab crossing		
Piwinski angle $\phi=\sigma_z\theta_c/(2\sigma_\chi^*)$	28.5, 5.8, 1.5	23.8, 2.6	0	0		
Beam-beam parameter ξ_y (10 ⁻³)	133, 118, 144	72, 109	n/a	n/a		
Disruption parameter D_y	0.9, 1.1, 1.9	0.3, 1.0	34, 25	8, 12		
Average Upsilon Υ	0.0002, 0.0004, 0.0006	0.0001, 0.0005	0.03, 0.06	0.26, 3.4		
RF frequency (MHz)	400, 400, 800	650	1300	11994		
Particles per bunch (10^{10})	17, 15, 27	8, 15	2	0.52, 0.37		
Bunches per beam	16640, 328, 33	12000, 242	1312 (pulse)	352, 312 (trains at 50 Hz)		
Average beam current (mA)	1390, 29, 5.4	19.2	6 (in train)	1660, 1200 (in train)		
RF gradient (MV/m)	1.3, 9.8, 19.8	3.6, 19.7	31.5	72, 100		
Polarization (%)	≥10, 0, 0	5-10, 0	e^- : 80% e^- : 70% at IP e^+ : 30%			
SR power loss (MW)	100	64	n/a	n/a		
Beam power/beam (MW)	n/a	n/a	5.3, 10.5	3, 14		
Novel technology	_	-	high grad. SC RF two-beam accel.			

Estrategia para el análisis de los datos

Cualquier análisis que pretenda estudiar un fenómeno específico involucra definir:

- 1) SR: una región donde la señal predice un exceso de eventos sobre el background predicho. Esta región se obtiene aplicando una selección a diferentes variables cinemáticas.
- 2) CR: una región de control donde los backgrounds pueden ser controlados comparándolos con los datos. Esta región permite estimar los procesos de background que contaminan la SR.
- 3) VR: regiones de validación del modelo utilizado para predecir los eventos de background en la SR.
- Los espacios de fase explorados deben ser amplios, considerando varios observables capaces de discriminar la señal del background.
- Las búsquedas actuales poseen gran complejidad, haciendo uso de todos los datos colectados.
- Si no se observa señal de nueva física, se establecen límites de exclusión para los valores de los parámetros testeados.