Dark Matter in Non-Standard Cosmology

1st October 2019 - MOCa 2019

James Unwin

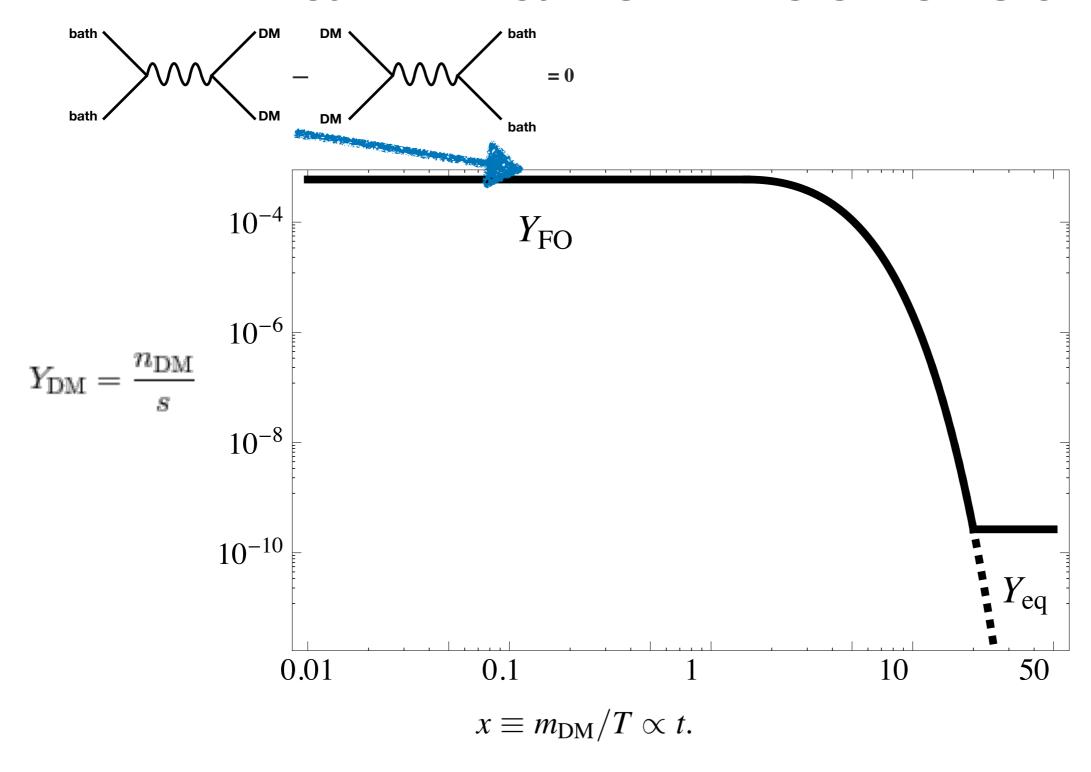
University of Illinois at Chicago

Outline

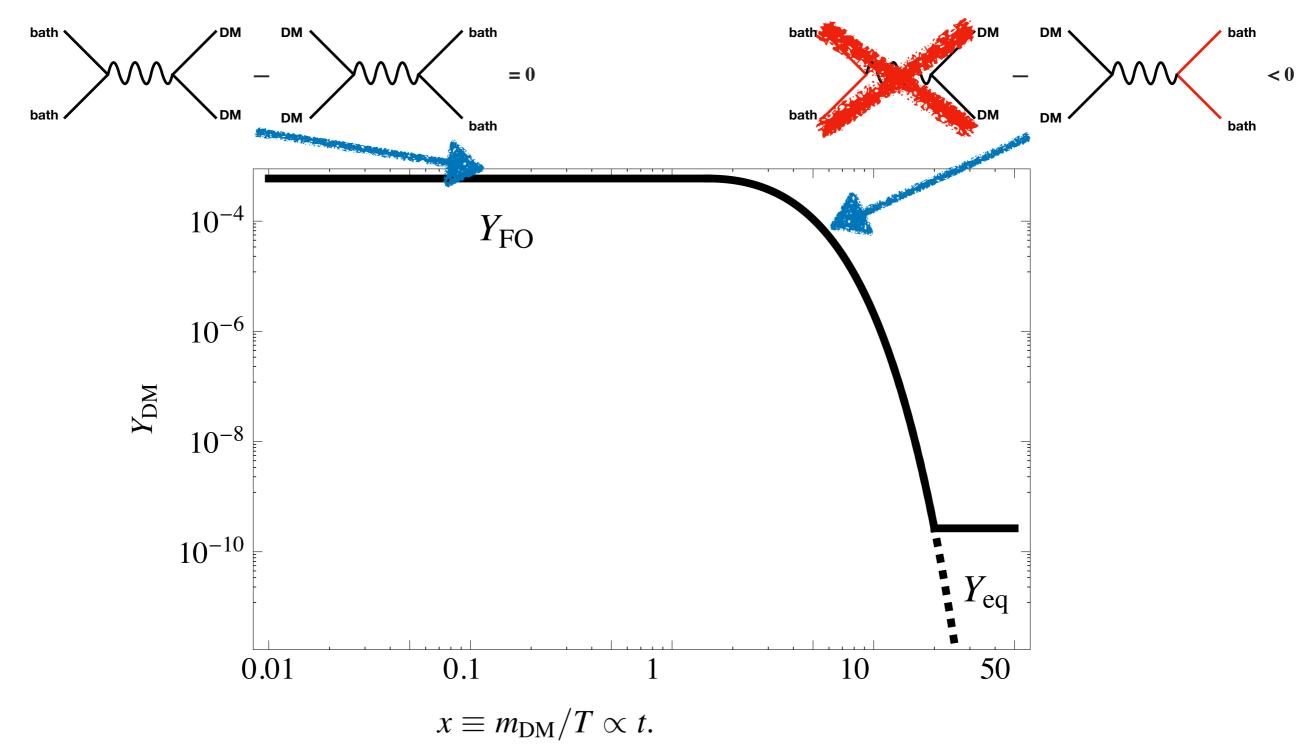
- 1. Thermal dark matter
- 2. Diluting dark matter
- 3. Freeze-out during matter domination
- 4. UV Freeze-in & non-standard cosmology

I. Thermal Dark Matter

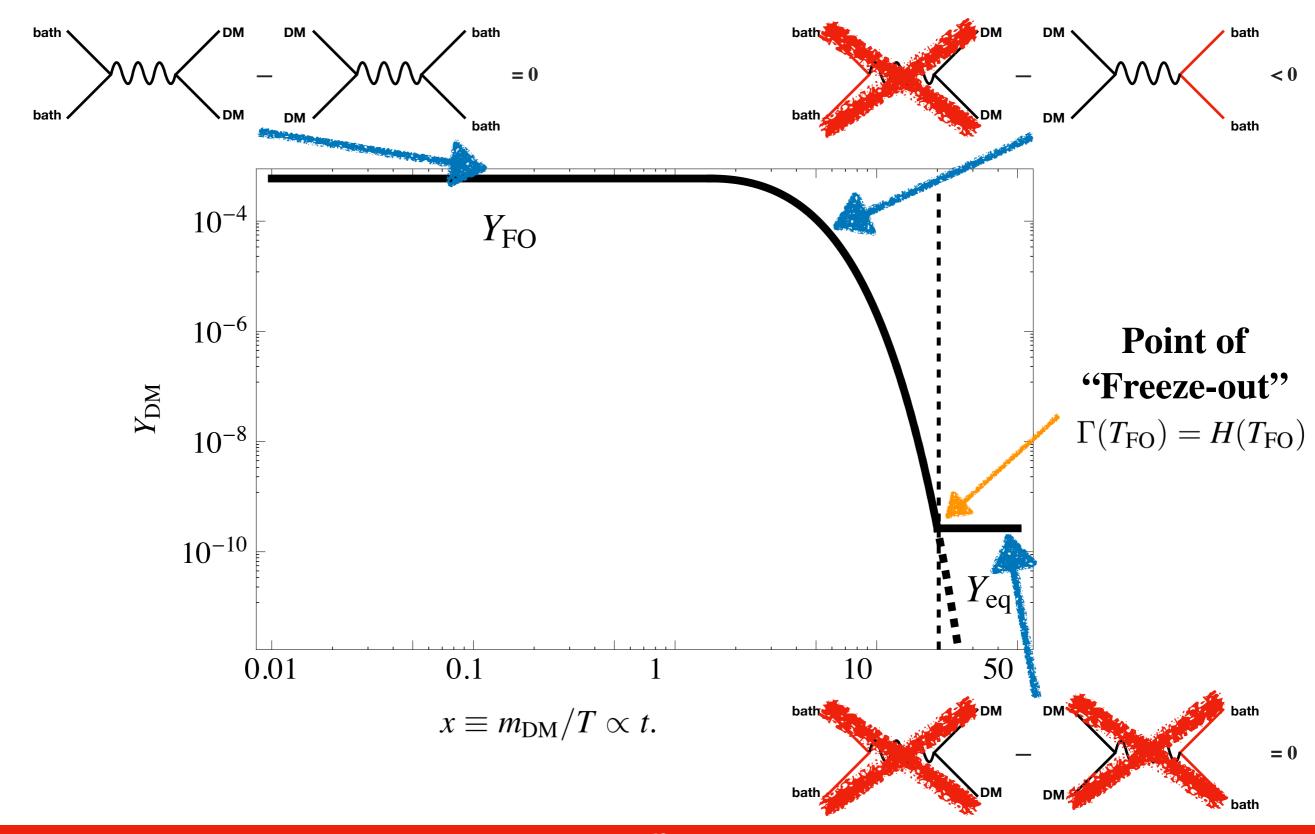
Dark Matter Freeze-out



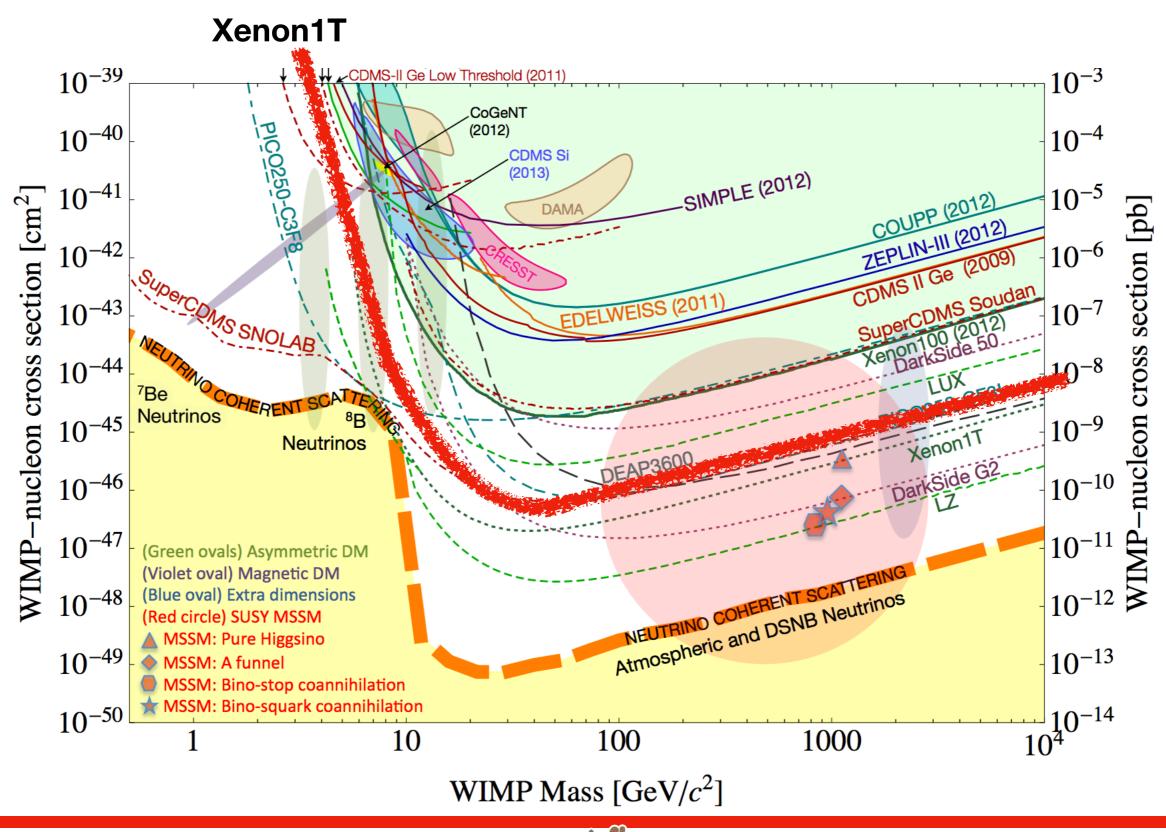
Dark Matter Freeze-out



Dark Matter Freeze-out

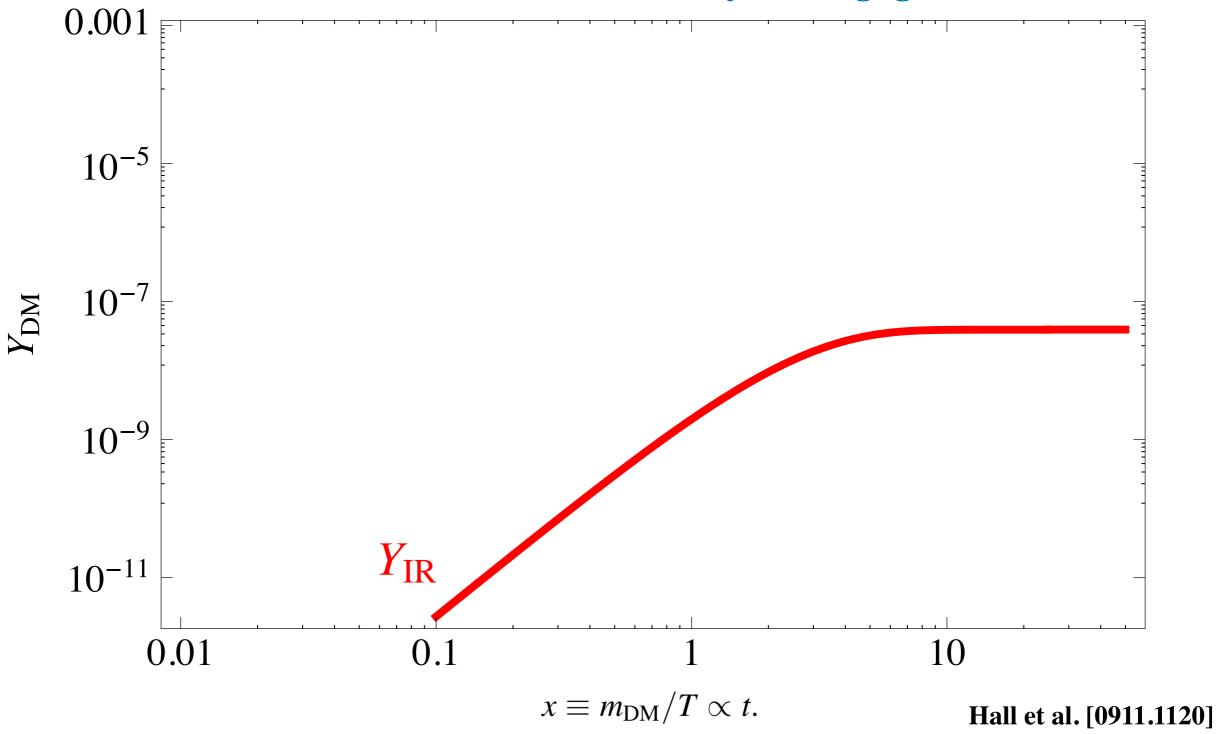


Current Bounds



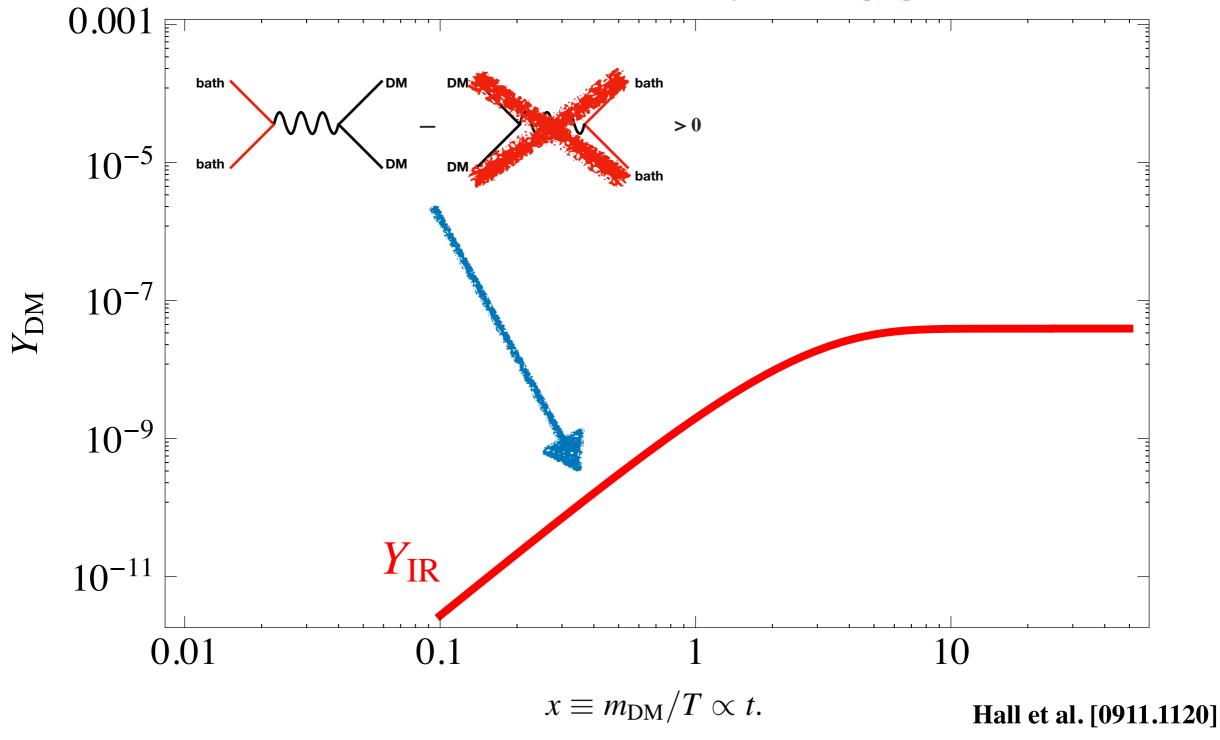
Freeze-in

Freeze-in assumes dark matter initially has negligible abundance.



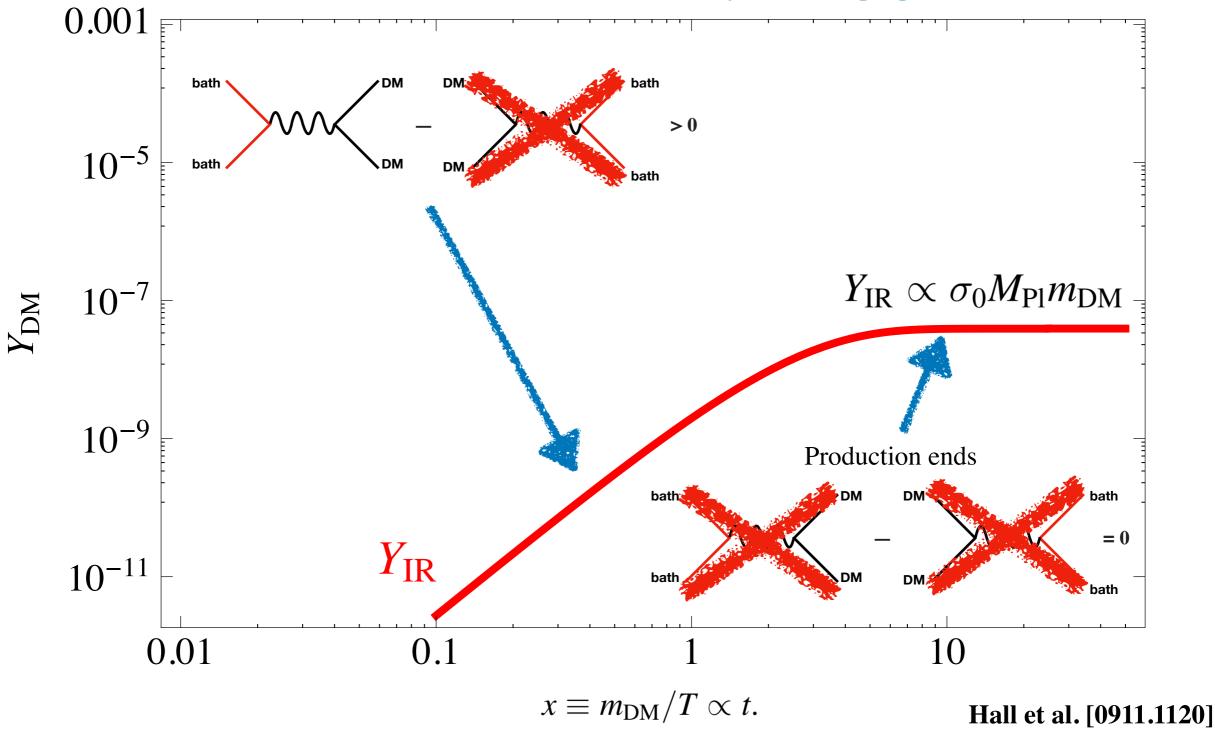
Freeze-in

Freeze-in assumes dark matter initially has negligible abundance.

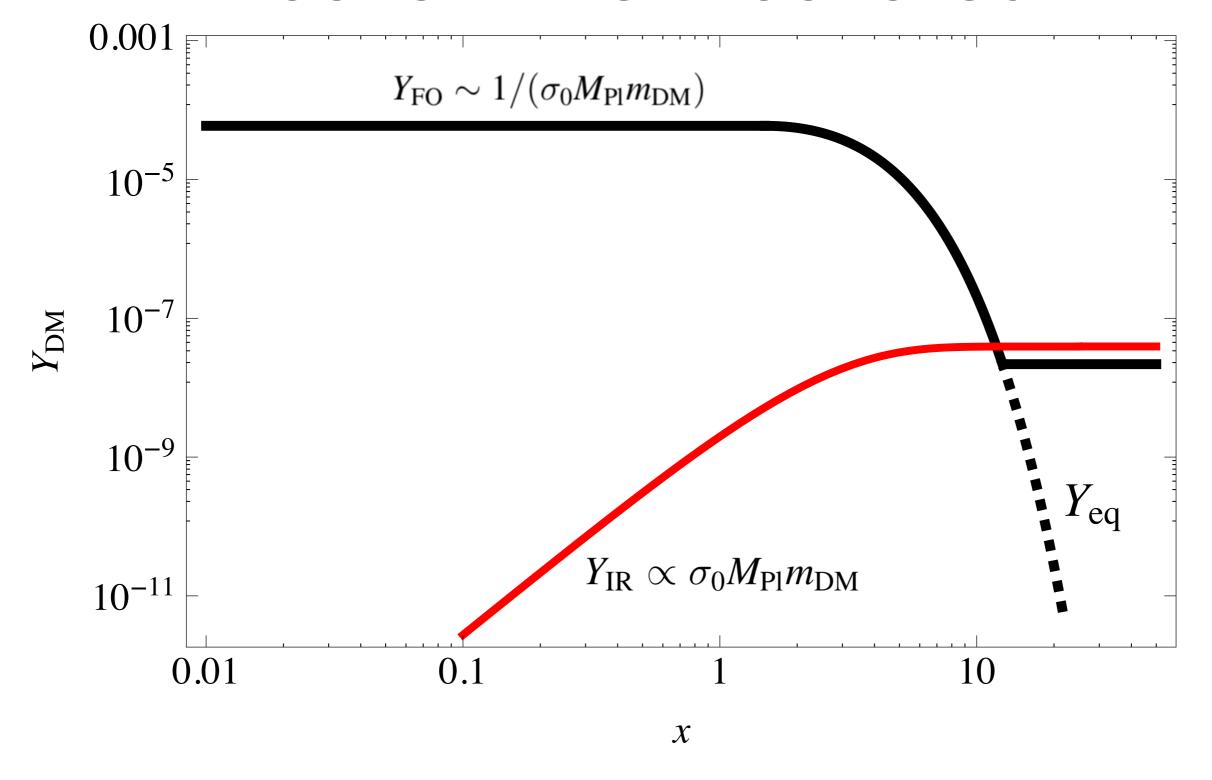


Freeze-in

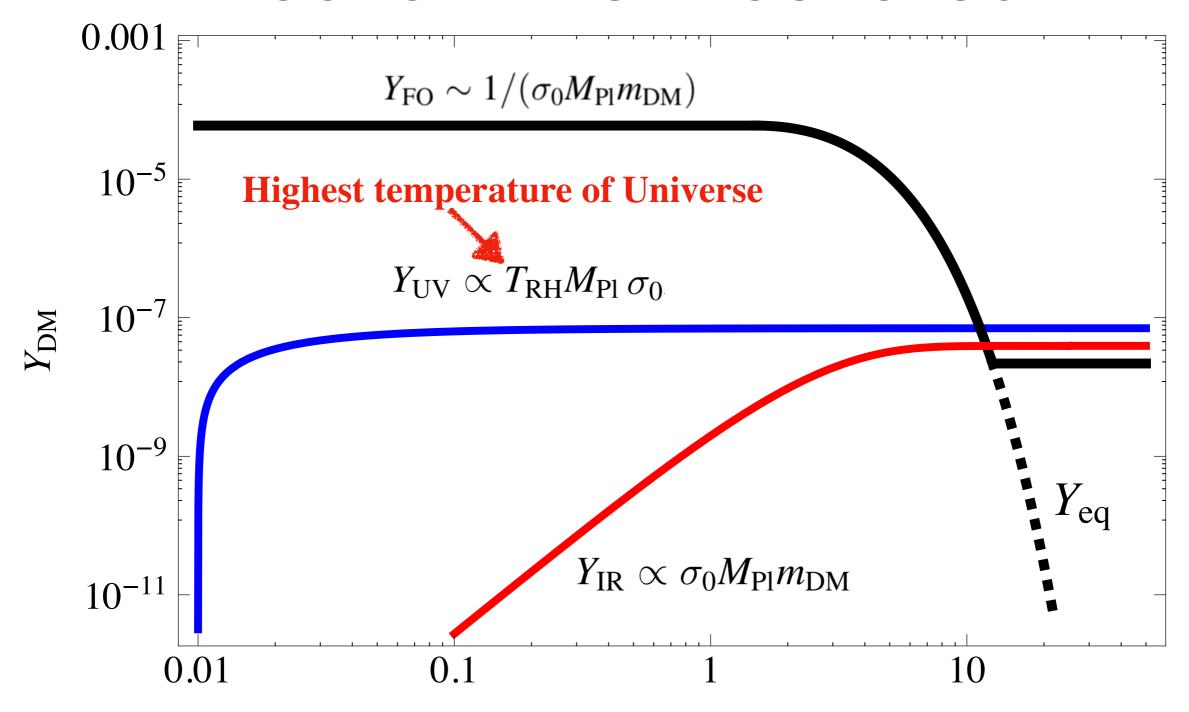
Freeze-in assumes dark matter initially has negligible abundance.



Freeze-in vs Freeze-out



Freeze-in vs Freeze-out

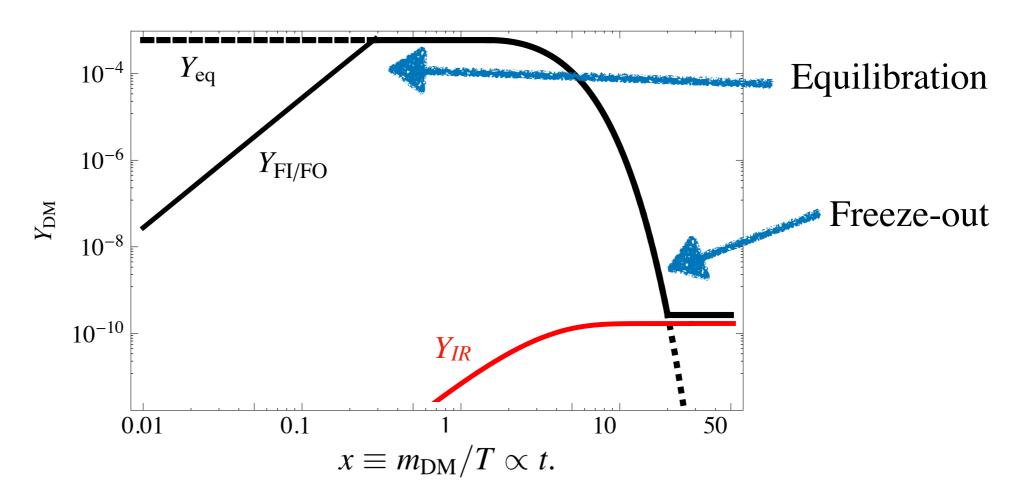


Parameter depends very different in all three cases.

Elahi, Kolda & JU JHEP 1503 (2015) 048

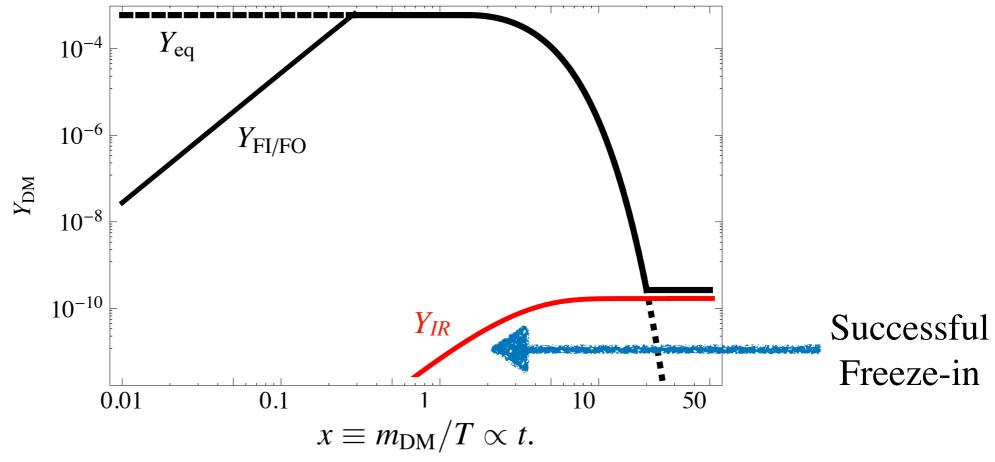
Equilibration and FIMPS

If energy exchange is too large, risk dark matter equilibration with thermal bath.



Equilibration and FIMPS

If energy exchange is too large, risk dark matter equilibration with thermal bath.



For IR Freeze-in with GeV DM this require couplings: $\lambda \lesssim 10^{-7}$

Avoiding equilibration requires very 'feeble' couplings: FIMP Dark Matter.

Requires dedicated experiments for light dark matter or long lived states.

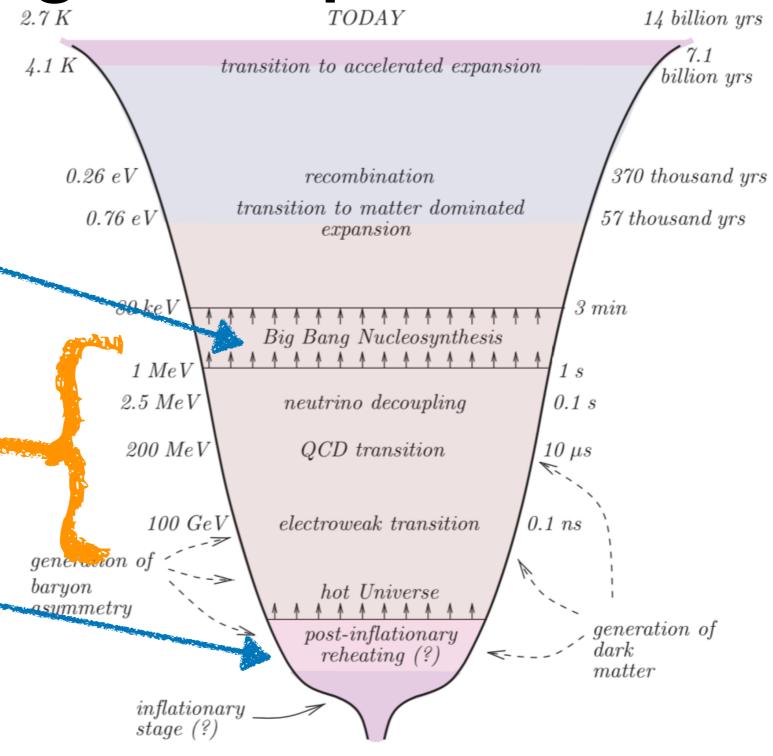
II. Diluting Dark Matter

Cosmological Impact

Earliest cosmological evidence (know to be radiation dominated)

Non-Standard Model cosmological events?

End of Inflation (start of radiation domination?)



Cosmological Impact

After dark matter is frozen out its number does not change from interactions.

$$\Omega_{\mathrm{DM}} \propto m_{\mathrm{DM}} Y_{\mathrm{DM}} \propto m_{\mathrm{DM}} \frac{n_{\mathrm{DM}}}{n_{\gamma}}$$

However, decaying particles can heat SM bath, & dilute $Y_{\rm DM}$ since $n_{\gamma} \propto T^3$.

Gelmini and Gondolo [hep-ph/0602230]

Randall, Scholtz & JU [1509.08477]
Berlin, Hooper & Krnjaic [1602.08490]
Bernal, Cosme & Tenkanen [1803.08064]

Cosmological Impact

After dark matter is frozen out its number does not change from interactions.

$$\Omega_{\rm DM} \propto m_{\rm DM} Y_{\rm DM} \propto m_{\rm DM} \frac{n_{\rm DM}}{n_{\gamma}}$$

However, decaying particles can heat SM bath, & dilute $Y_{\rm DM}$ since $n_{\gamma} \propto T^3$.

$$\Omega_{\rm DM} \propto \zeta m_{\rm DM} Y_{\rm FO}$$

Dilution factor ζ from temperature after decays T_{after} compared to without decays:

Gelmini and Gondolo [hep-ph/0602230]

Randall, Scholtz & JU [1509.08477]
Berlin, Hooper & Krnjaic [1602.08490]
Bernal, Cosme & Tenkanen [1803.08064]

$$\zeta = \left(\frac{T_{\text{without}}}{T_{\text{after}}}\right)^3 \le 1$$

Because of dilution, correct relic density for weaker interactions with SM.

Changes expectation for $m_{\rm DM}$ and σ_0 and reduces tension with experiments.

Dilution from a Decaying State

Add a state χ which becomes matter-like at $T_{\rm crit}$ — typically $T_{\rm crit} = m_{\chi}$

Friedman equation for gives evolution of energy for $H(T_{crit}) > H > \Gamma_{\chi}$

$$H^2 \simeq rac{\pi^2}{90} rac{g_{\star} T_{
m crit}^4}{M_{
m Pl}^2} \left[R_{\chi} \left(rac{1}{\Delta a}
ight)^3 + R_{
m rad} \left(rac{1}{\Delta a}
ight)^4
ight] \qquad {
m with} \qquad R_i \equiv
ho_i/(
ho_{\chi} +
ho_{
m rad}) ig|_{
m crit}$$

Dilution from a Decaying State

Add a state χ which becomes matter-like at $T_{\rm crit}$ — typically $T_{\rm crit} = m_{\chi}$

Friedman equation for gives evolution of energy for $H(T_{crit}) > H > \Gamma_{\chi}$

$$H^2 \simeq rac{\pi^2}{90} rac{g_{\star} T_{
m crit}^4}{M_{
m Pl}^2} \left[R_{\chi} \left(rac{1}{\Delta a}
ight)^3 + R_{
m rad} \left(rac{1}{\Delta a}
ight)^4
ight] \qquad {
m with} \qquad R_i \equiv
ho_i/(
ho_{\chi} +
ho_{
m rad}) ig|_{
m crit}$$

The relative energy density in χ grows until it decays at:

$$\Delta a_{\Gamma} \equiv rac{a(H=\Gamma_{\chi})}{a(T_{
m crit})} \simeq \left(rac{\pi^2 g_{\star} T_{
m crit}^4}{90 M_{
m Pl}^2 \Gamma_{\chi}^2} R_{\chi}
ight)^{1/3}$$

If χ is long lived, it may evolves to dominate the energy density of Universe.

Dilution from a Decaying State

Add a state χ which becomes matter-like at $T_{\rm crit}$ — typically $T_{\rm crit} = m_{\chi}$

Friedman equation for gives evolution of energy for $H(T_{crit}) > H > \Gamma_{\chi}$

$$H^2 \simeq rac{\pi^2}{90} rac{g_{\star} T_{
m crit}^4}{M_{
m Pl}^2} \left[R_{\chi} \left(rac{1}{\Delta a}
ight)^3 + R_{
m rad} \left(rac{1}{\Delta a}
ight)^4
ight] \qquad {
m with} \qquad R_i \equiv
ho_i/(
ho_{\chi} +
ho_{
m rad}) ig|_{
m crit}$$

The relative energy density in χ grows until it decays at:

$$\Delta a_{\Gamma} \equiv rac{a(H=\Gamma_{\chi})}{a(T_{
m crit})} \simeq \left(rac{\pi^2 g_{\star} T_{
m crit}^4}{90 M_{
m Pl}^2 \Gamma_{\chi}^2} R_{\chi}
ight)^{1/3}$$

If χ is long lived, it may evolves to dominate the energy density of Universe.

 χ decay heats the bath, to $T_{\rm RH} \simeq \sqrt{M_{\rm Pl} \Gamma_{\chi}}$, any frozen-out species diluted:

$$\zeta = \left(\frac{T_{
m without}}{T_{
m after}}\right)^3 \simeq \left(\frac{R_{
m rad}}{R_\chi} \Delta a_\Gamma^{-1}\right)^{3/4} \sim 10^{-10} \left(\frac{T_{
m RH}}{10~{
m MeV}}\right) \left(\frac{10^8~{
m GeV}}{T_{
m crit}}\right)$$

for
$$R_{\rm rad}/R_{\chi} \simeq 1$$
,

III. Freeze-out During Matter Domination

Changes to the Expansion Rate

Notable, expansion rate H depends critically on cosmology:

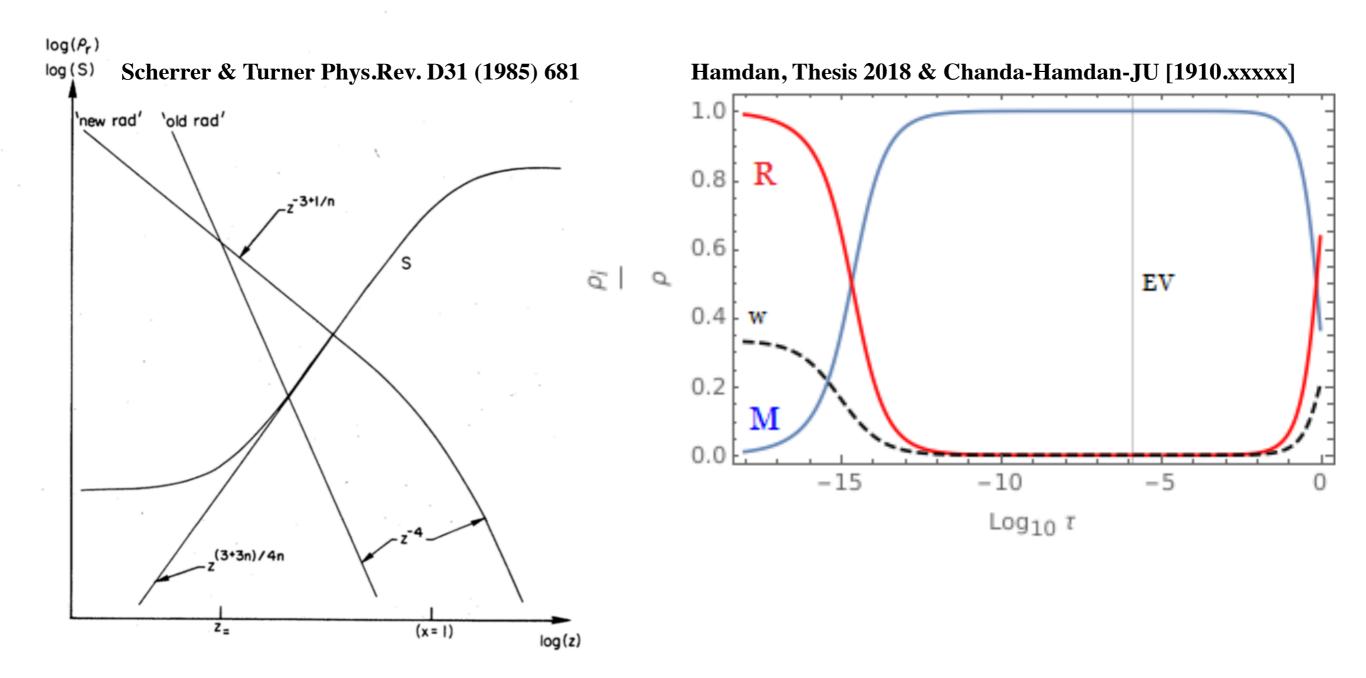
During radiation domination

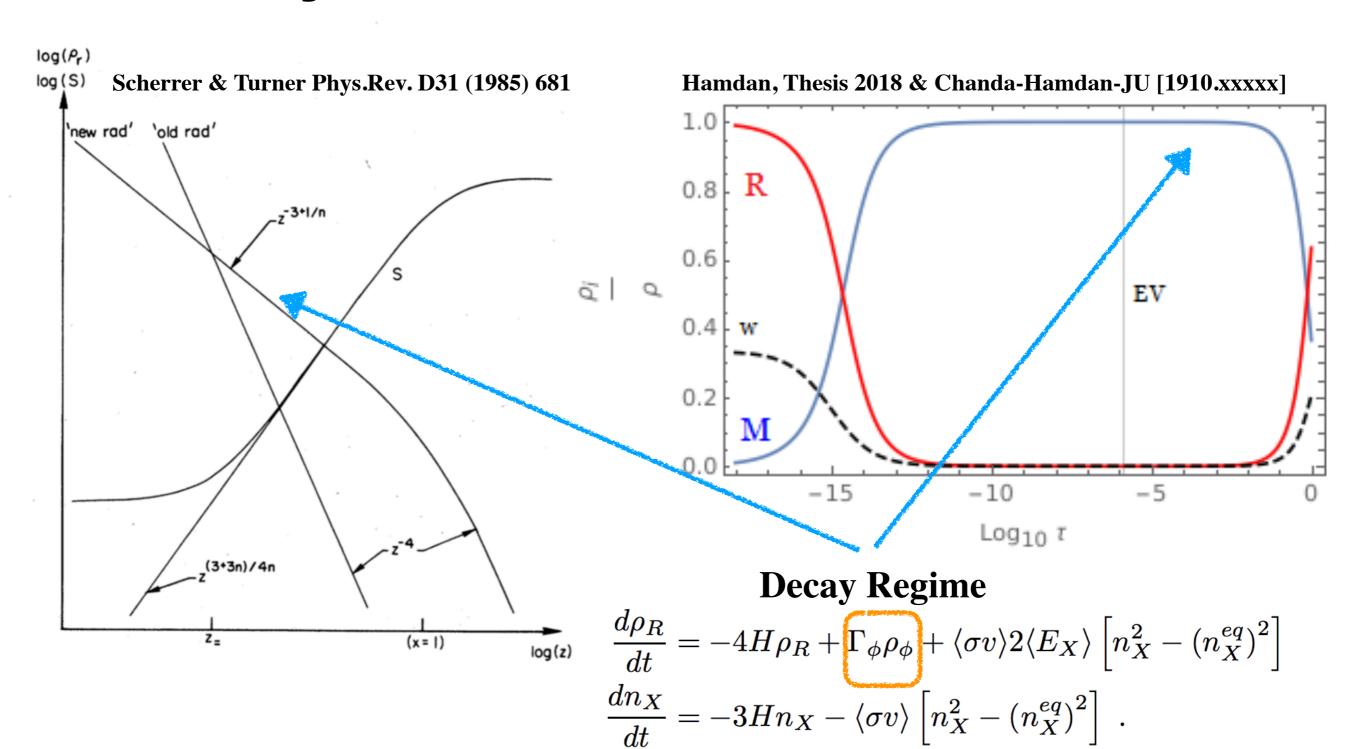
Giudice, Kolb, and Riotto, PRD 64 (2001) 023508

During matter domination

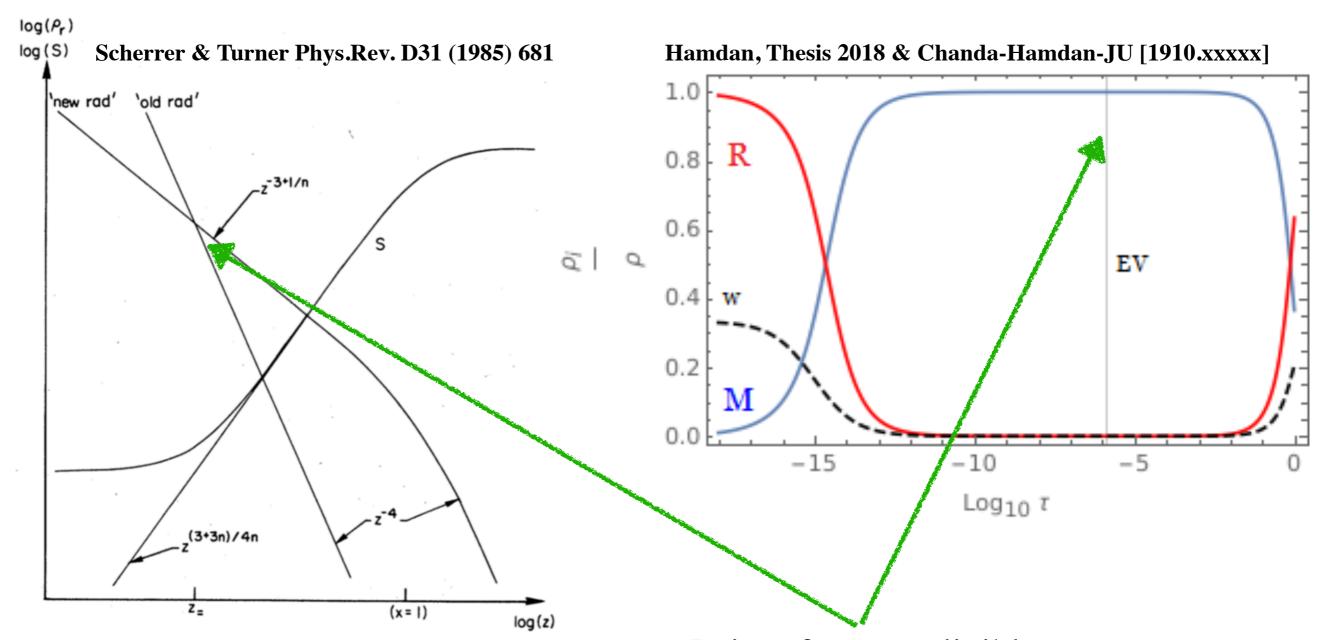
Hamdan & JU [1710.03758] Also (in passing): Kamionkowski & Turner PRD 42 (1990) 3310

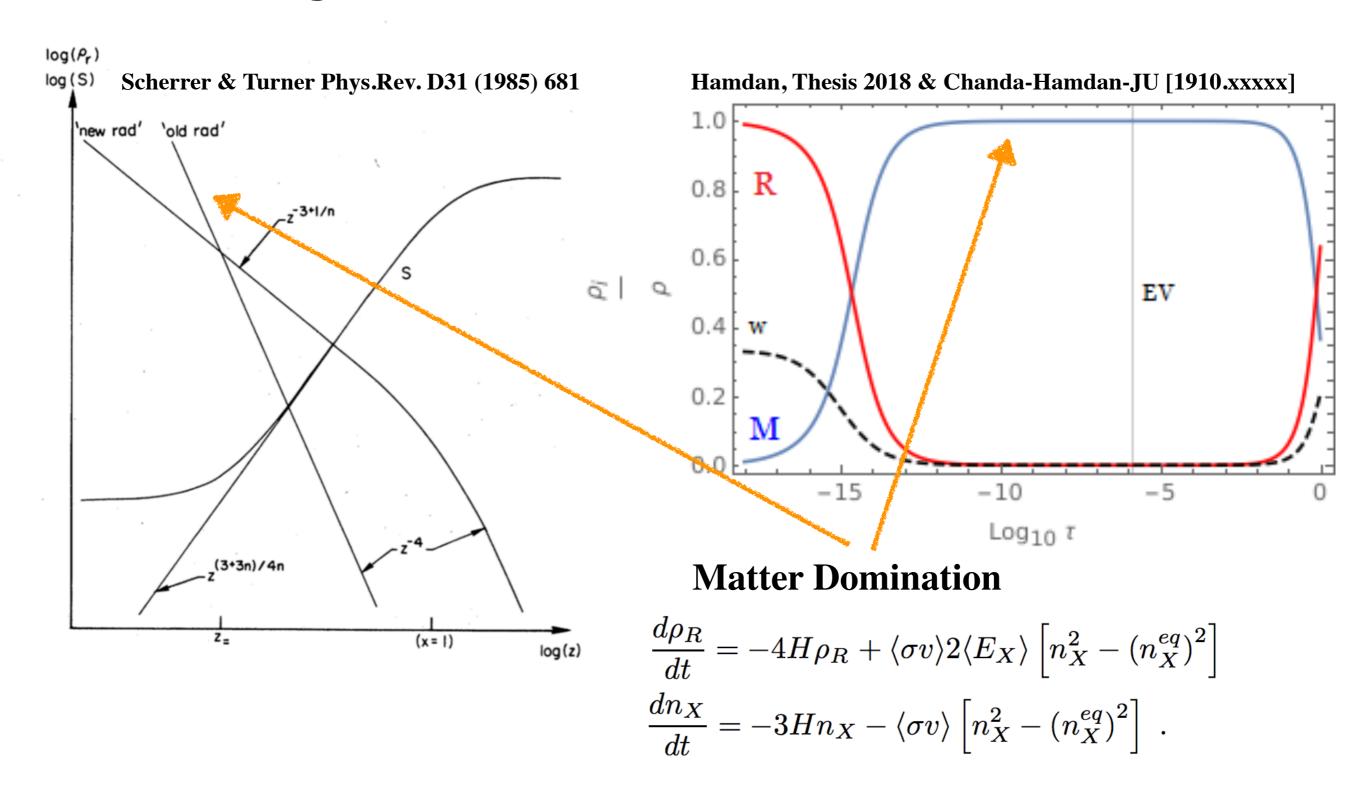
Recall $T_{\rm FO}$ is defined $\Gamma(T_{\rm FO}) = H(T_{\rm FO})$, changing H impacts final $Y_{\rm DM}$.





Giudice, Kolb, & Riotto, PRD 64 (2001) 023508





Changes to the Expansion Rate

Notable, expansion rate *H* depends critically on cosmology:

$$H \propto \left\{ egin{array}{ll} T^2 & {
m During\ radiation\ domination} \ \\ T^4 & {
m During\ particle\ decays\ (heating)\ } \\ {
m Giudice,\ Kolb,\ and\ Riotto,\ PRD\ 64\ (2001)\ 023508} \ \\ \hline T^{3/2} & {
m During\ matter\ domination\ } \\ {
m Hamdan\ \&\ JU\ [1710.03758]\ } \\ {
m Also\ (in\ passing):\ Kamionkowski\ \&\ Turner\ PRD\ 42\ (1990)\ 3310} \ \end{array}
ight.$$

Recall $T_{\rm FO}$ is defined $\Gamma(T_{\rm FO}) = H(T_{\rm FO})$, changing H impacts final $Y_{\rm DM}$.

One can emulate the standard Boltzmann treatment

$$\dot{n}_X + 3Hn_X = -\langle \sigma v \rangle [n_X^2 - (n_X^{\text{eq}})^2]$$

but with different form for H

$$H \simeq H_{\star} \left(\frac{g_{\star}(T)}{g_{\star}(T_{\star})}\right)^{3/8} \left(\frac{T}{T_{\star}}\right)^{3/2} \left[(1-r) + r \left(\frac{T}{T_{\star}}\right) \right]^{1/2} \text{ for } r = \begin{cases} 1 & \text{RD} \\ 0 & \text{MD} \end{cases}$$

Where T_{\star} is temperature χ becomes matter-like and $H_{\star} \equiv H(T_{\star})$

One can emulate the standard Boltzmann treatment

$$\dot{n}_X + 3Hn_X = -\langle \sigma v \rangle [n_X^2 - (n_X^{\text{eq}})^2]$$

but with different form for H

$$H \simeq H_{\star} \left(\frac{g_{\star}(T)}{g_{\star}(T_{\star})}\right)^{3/8} \left(\frac{T}{T_{\star}}\right)^{3/2} \left[(1-r) + r \left(\frac{T}{T_{\star}}\right) \right]^{1/2} \text{ for } r = \begin{cases} 1 & \text{RD} \\ 0 & \text{MD} \end{cases}$$

Where T_{\star} is temperature χ becomes matter-like and $H_{\star} \equiv H(T_{\star})$

Radiation dominated freeze-out

$$T_{\rm FO}^{
m RD} \simeq \frac{m_{
m DM}}{\ln \left[m_{
m DM} M_{
m Pl} \sigma_0 \right]}$$

$$Y_{\text{FO}}^{\text{RD}} = 3\sqrt{\frac{5}{\pi}} \frac{\sqrt{g_{\star}} (n+1) x_F^{n+1}}{g_{\star S}} \frac{1}{M_{\text{pl}} m_{\text{DM}} \sigma_0}$$

Scherrer and Turner, PRD 33 (1986) 1585

Matter dominated freeze-out

$$T_{
m FO}^{
m MD} \simeq rac{m_{
m DM}}{\ln\left[m_{
m DM}^{3/2}M_{
m Pl}\sigma_0/\sqrt{T_{\star}}
ight]}$$

$$Y_{
m FO}^{
m MD} = 3\sqrt{rac{5}{\pi}} rac{\sqrt{g_*}}{g_{*S}} rac{(n+3/2)x_F^{n+3/2}}{M_{
m Pl} m_X \sigma_0 \sqrt{x_\star}} \; .$$

Hamdan & JU [1710.03758]

Y_{DM} in matter dominated FO different to radiation dominated case.

Radiation domination restored after freeze-out as "matter" decays to SM.

Required because observations imply radiation domination prior to current epoch.

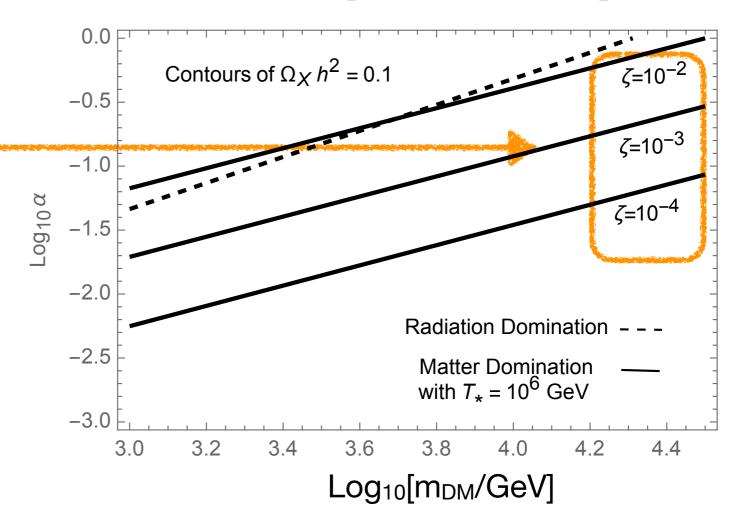
 $Y_{\rm DM}$ in matter dominated FO different to radiation dominated case.

Radiation domination restored after freeze-out as "matter" decays to SM.

Required because observations imply radiation domination prior to current epoch.

This **leads to dilution** ζ of the dark matter abundance:

$$\Omega_{\rm DM} = \zeta \times \frac{s_0 m_X Y_{\rm FO}}{\rho_c}$$



Hamdan & JU [1710.03758]

 $Y_{\rm DM}$ in matter dominated FO different to radiation dominated case.

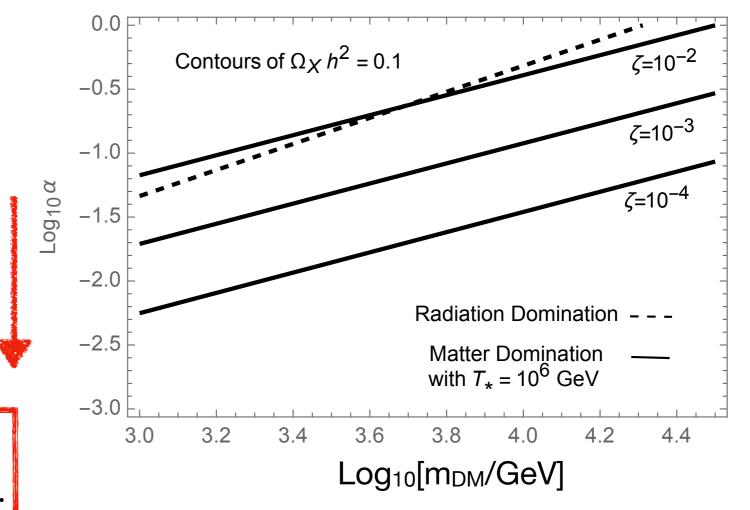
Radiation domination restored after freeze-out as "matter" decays to SM.

Required because observations imply radiation domination prior to current epoch.

This **leads to dilution** ζ of the dark matter abundance:

$$\Omega_{\rm DM} = \zeta \times \frac{s_0 m_X Y_{\rm FO}}{\rho_c}$$

More dilution implies smaller couplings



Weakening search limits

compared to radiation dominated FO.

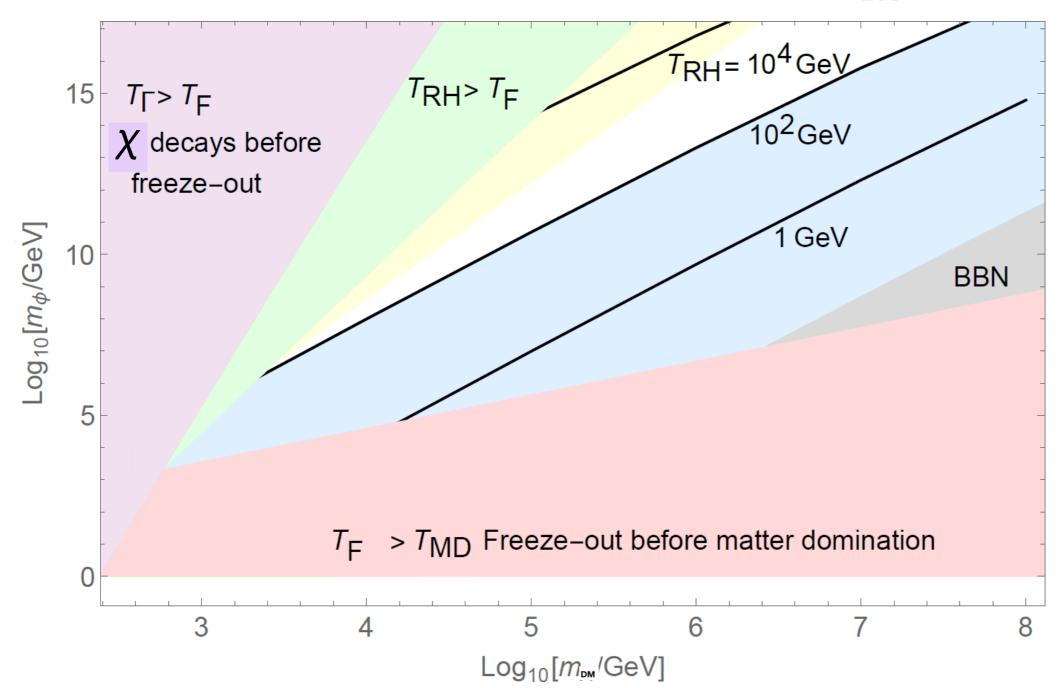
Hamdan & JU [1710.03758]

For DM freeze-out during matter domination, whilst avoiding cosmological constraints:

- a). Universe matter dominated during freeze-out
- **b**). Decay of χ prior to **BBN**
- c). Decay of χ after dark matter freeze-out
- d). χ decays negligible during dark matter freeze-out o.w./ similar to Giudice, Kolb, and Riotto, PRD 64 (2001) 023508
- e). Decays of χ prior to EWPT (optional model dependent)

MDFO Parameter space

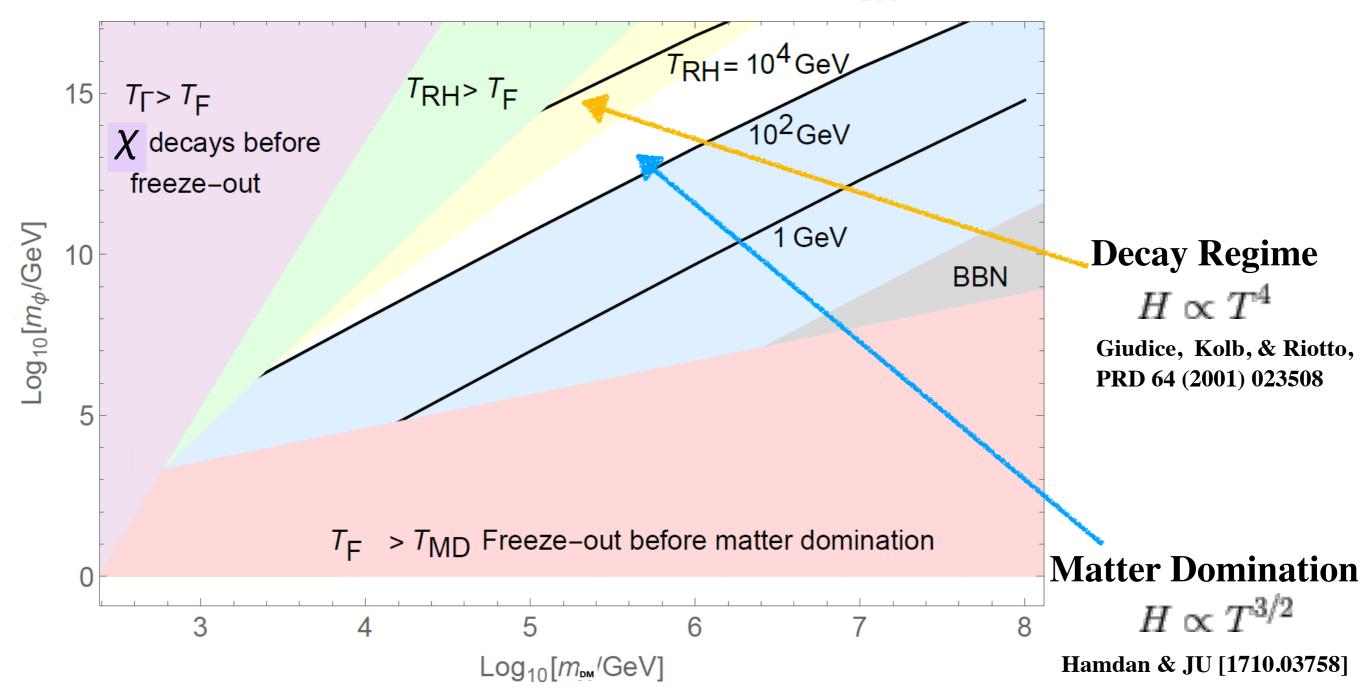
Putting this together, the parameter space for $\sigma \sim \frac{\alpha_{\rm DM}^2}{m_{\rm DM}}$, $\alpha=0.1$ and $T_\star \simeq m_\chi$



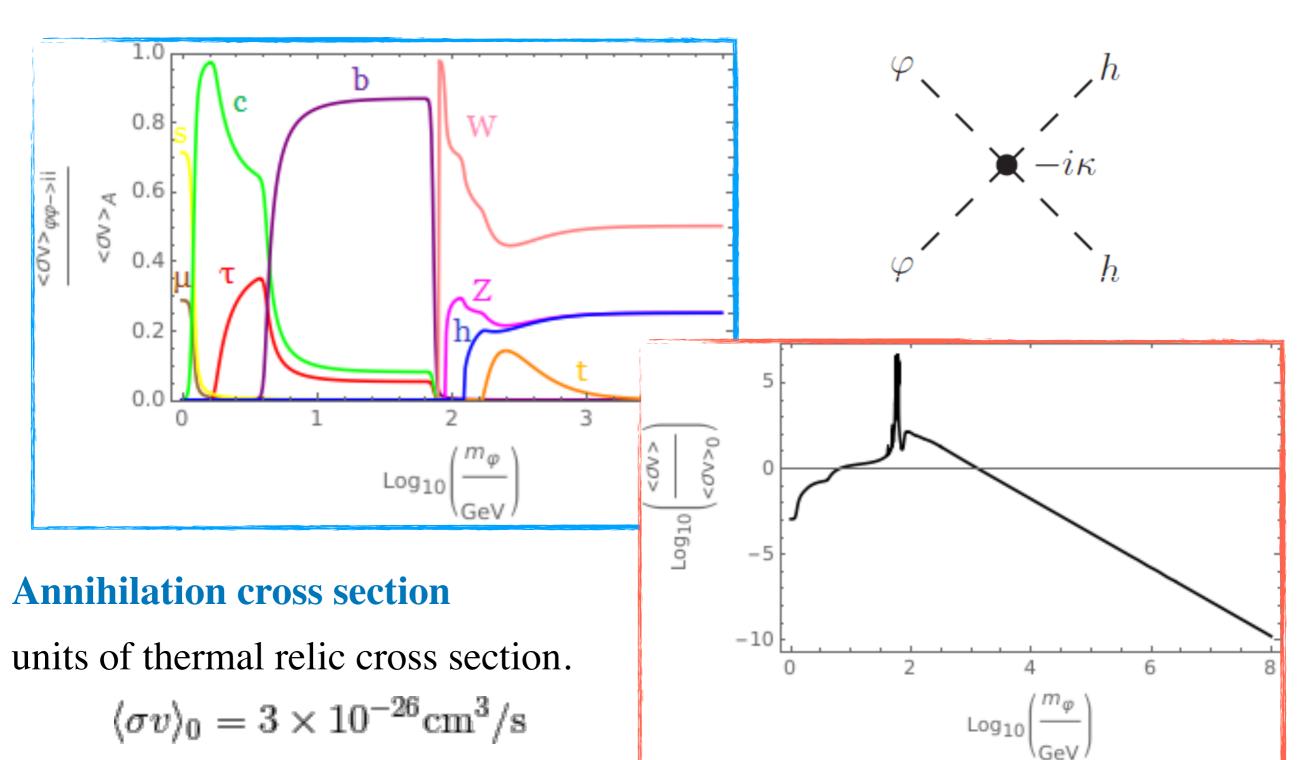
Hamdan & JU [1710.03758]

MDFO Parameter space

Putting this together, the parameter space for $\sigma \sim \frac{\alpha_{\rm DM}^2}{m_{\rm DM}}$, $\alpha=0.1$ and $T_\star \simeq m_\chi$

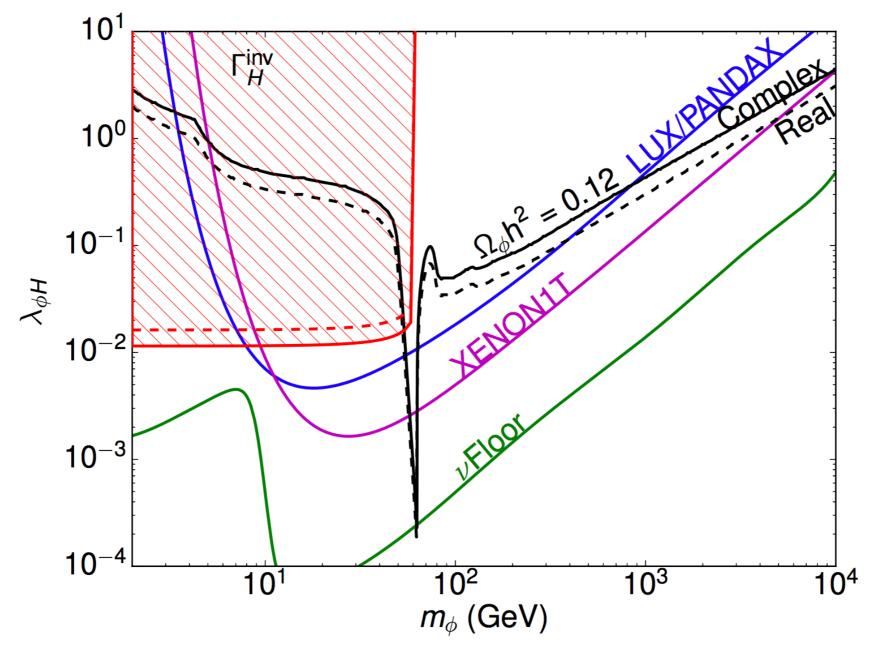


Example: Scalar Higgs Portal



Classic Ref: Cline, Kainulainen, Scott, Weniger [1306.4710]

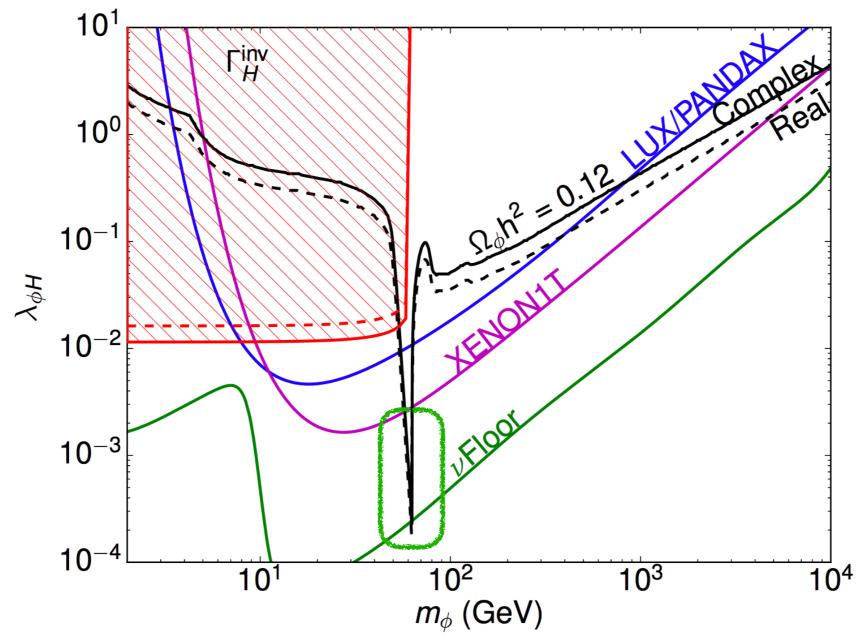
Example: Scalar Higgs Portal



Scalar Higgs Portal assuming **Standard Cosmology**...

Escudero-Berlin-Hooper-Lin [1609.09079]

Example: Scalar Higgs Portal



Scalar Higgs Portal assuming Standard Cosmology is experimentally excluded away from region of resonant annihilation via the Higgs.

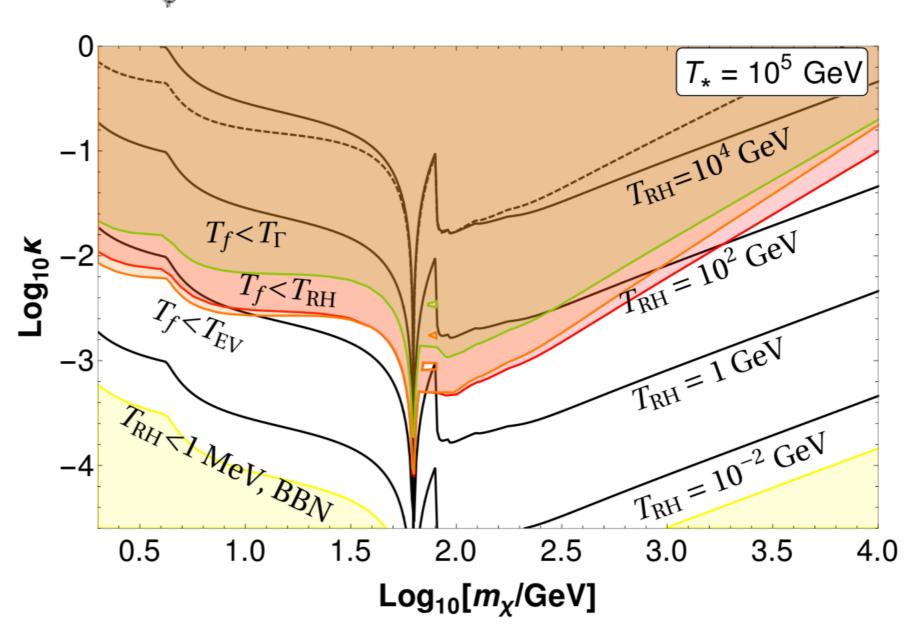
Escudero-Berlin-Hooper-Lin [1609.09079]

MDFO via Higgs Portal

Again considering the case $\sigma_0 \sim \frac{\kappa^2}{m_\omega^2}$ and $T_\star \simeq m_\omega^2$

Cosmological requiremen

- a). Matter dominated during freeze-out
- b). χ decay prior to BBN
- c). χ decay after FO
- d). χ decays negligible during FO



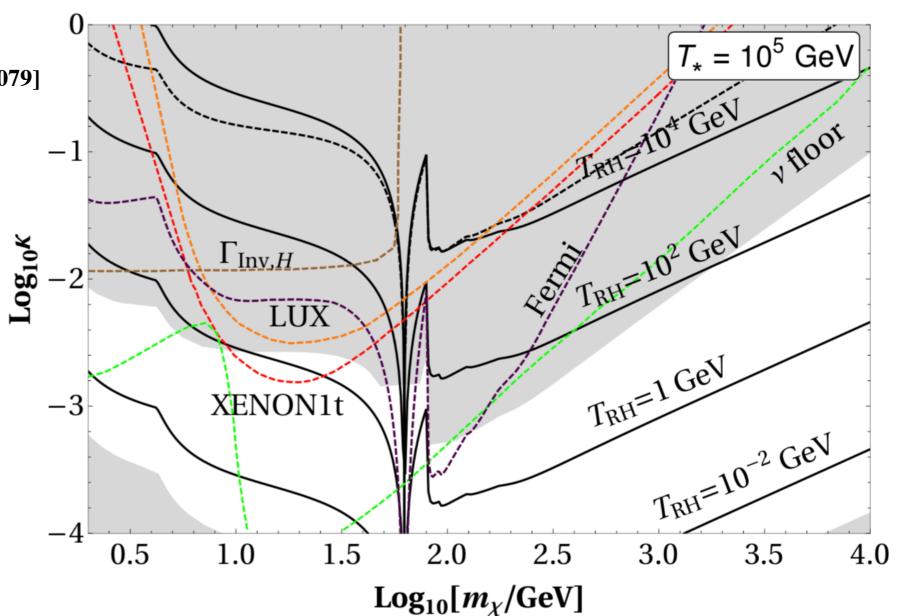
Hamdan, Thesis 2018 & Chanda-Hamdan-JU [1910.xxxxx]

MDFO via Higgs Portal

Experimental limits:

cf. Escudero-Berlin-Hooper-Lin [1609.09079]

- a). Fermi-LAT
- b). Xenon1T
- c). LUX/PandaX
- d). Invisible Higgs decay
- e). Neutrino Floor



In MDFO Higgs Portal revived as a viable model.

Hamdan, Thesis 2018 & Chanda-Hamdan-JU [1910.xxxxx] See also: Bernal, Cosme & Tenkanen [1803.08064], Hardy [1804.06783]

IV. UV Freeze-in & Non-Standard Cosmology

UV freeze-in: the production cross section of DM from thermal bath is:

$$\langle \sigma v \rangle \sim \frac{T^n}{\Lambda^{2+n}}$$

The **DM** abundance is expected to be

$$Y \sim \int_0^{T_{\rm RH}} \frac{M_{\rm Pl} T^n}{\Lambda^{n+2}} \sim \frac{M_{\rm Pl} T_{\rm RH}^{n+1}}{\Lambda^{n+2}} \ .$$

 $T_{\rm RH}$ is reheat temperature assuming instantaneous decay of inflaton.

UV freeze-in: the production cross section of DM from thermal bath is:

$$\langle \sigma v \rangle \sim \frac{T^n}{\Lambda^{2+n}}$$

The **DM** abundance is expected to be

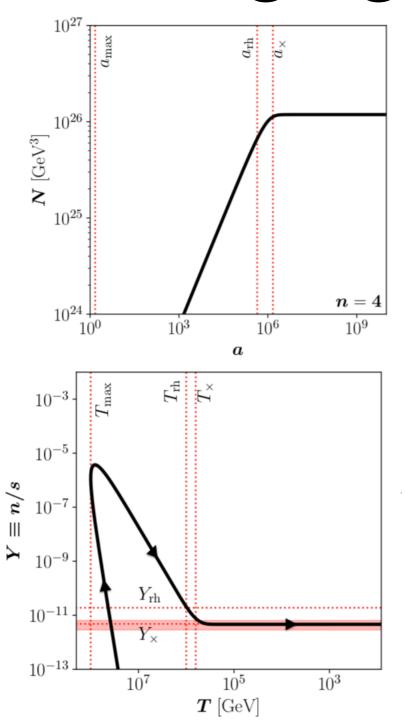
$$Y \sim \int_0^{T_{\rm RH}} \frac{M_{\rm Pl} T^n}{\Lambda^{n+2}} \sim \frac{M_{\rm Pl} T_{\rm RH}^{n+1}}{\Lambda^{n+2}} \ .$$

 $T_{\rm RH}$ is reheat temperature assuming instantaneous decay of inflaton.

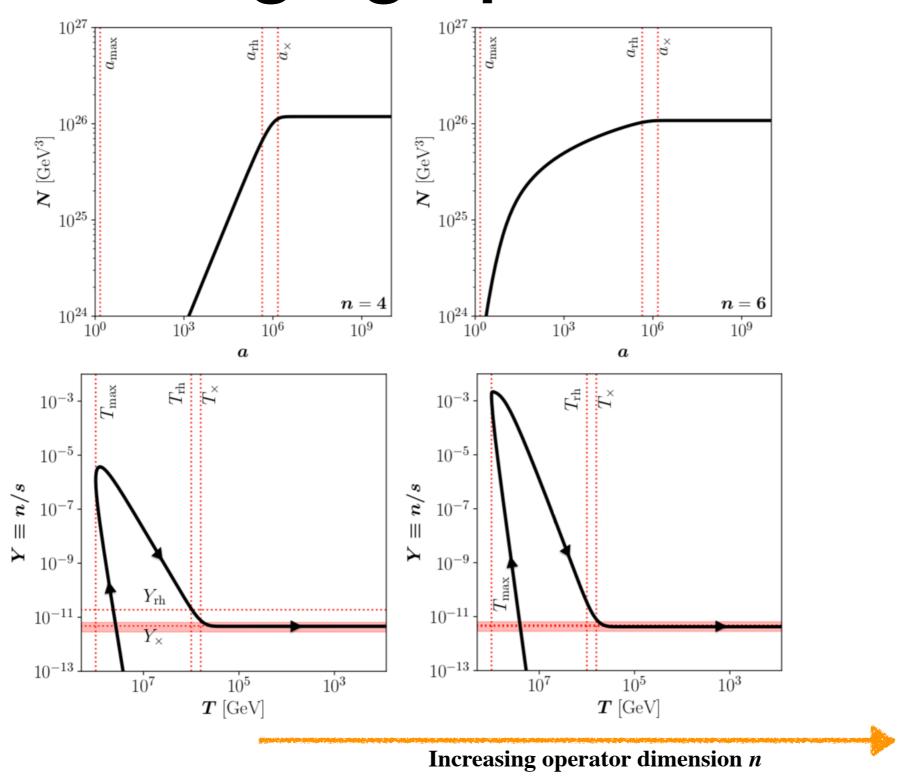
Assuming universe initially matter dominated before reheating then for *n*>6 then DM abundance enhanced relative to sudden decay approx.

Garcia, Mambrini, Olive, Peloso, [1709.01549].

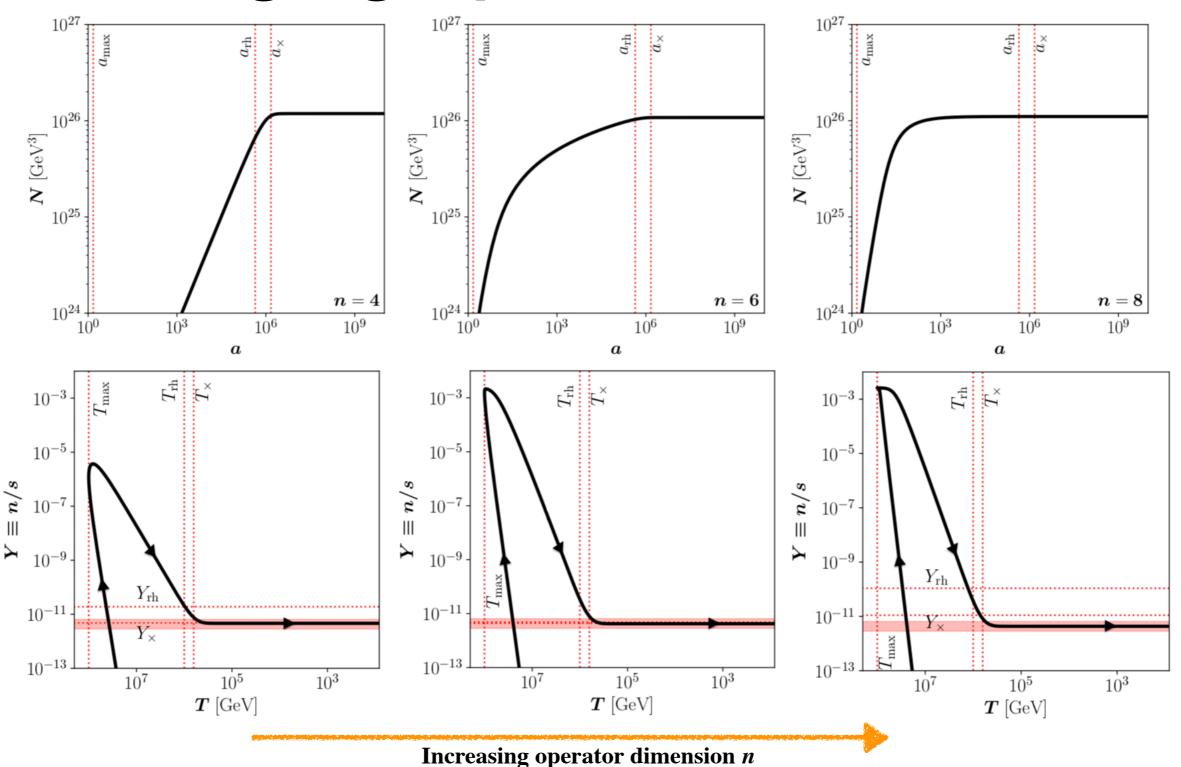
Changing operator dimension



Changing operator dimension



Changing operator dimension



Transition from non-standard cosmology

If the early universe is dominated by field evolving as:

$$\rho_{\phi}(t) = \rho_{\phi}(t_I)a^{a+m}$$

The equation of state for ϕ is $\omega = \frac{p_{\phi}}{\rho_{\phi}} = \frac{m+1}{3}$

If the state ϕ is decaying to Standard Model radiation then the evolution follows

$$\frac{d\rho_{\phi}}{dt} + 3(1+\omega)H\rho_{\phi} = -\Gamma_{\phi}\rho_{\phi}$$

$$\frac{d\rho_R}{dt} + 4H\,\rho_R = +\Gamma_\phi\,\rho_\phi$$

Transition from non-standard cosmology

If the early universe is dominated by field evolving as:

$$\rho_{\phi}(t) = \rho_{\phi}(t_I)a^{a+m}$$

The **equation of state** for ϕ is $\omega = \frac{p_{\phi}}{\rho_{\phi}} = \frac{m+1}{3}$

If the state ϕ is decaying to Standard Model radiation then the evolution follows

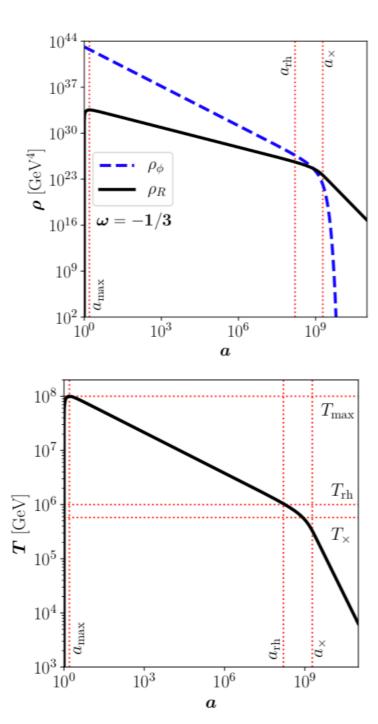
$$\frac{d\rho_{\phi}}{dt} + 3(1+\omega)H\,\rho_{\phi} = -\Gamma_{\phi}\,\rho_{\phi}$$

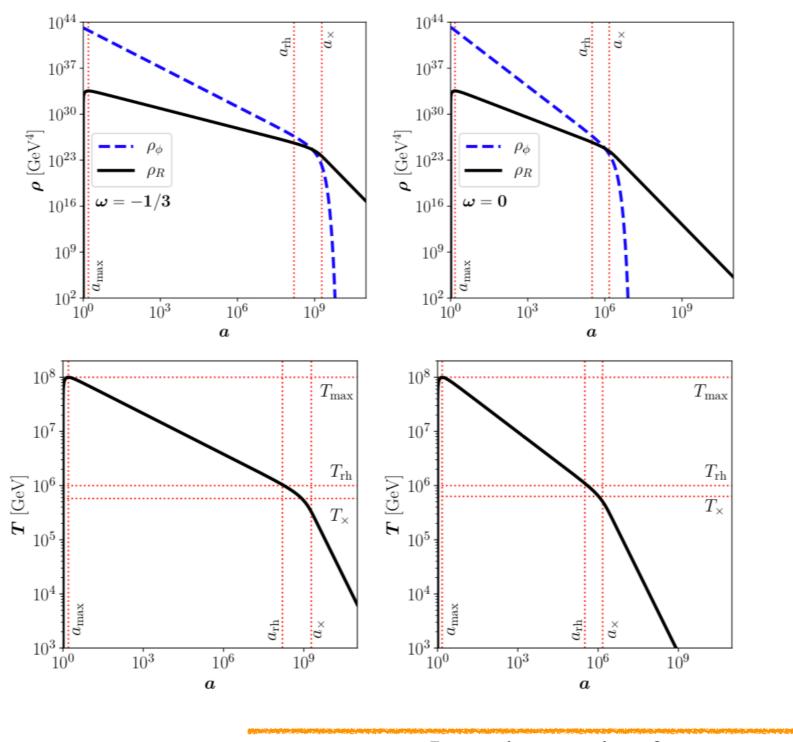
$$\frac{d\rho_R}{dt} + 4H\,\rho_R = +\Gamma_\phi\,\rho_\phi$$

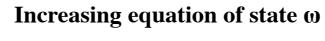
It follows the energy densities evolve as

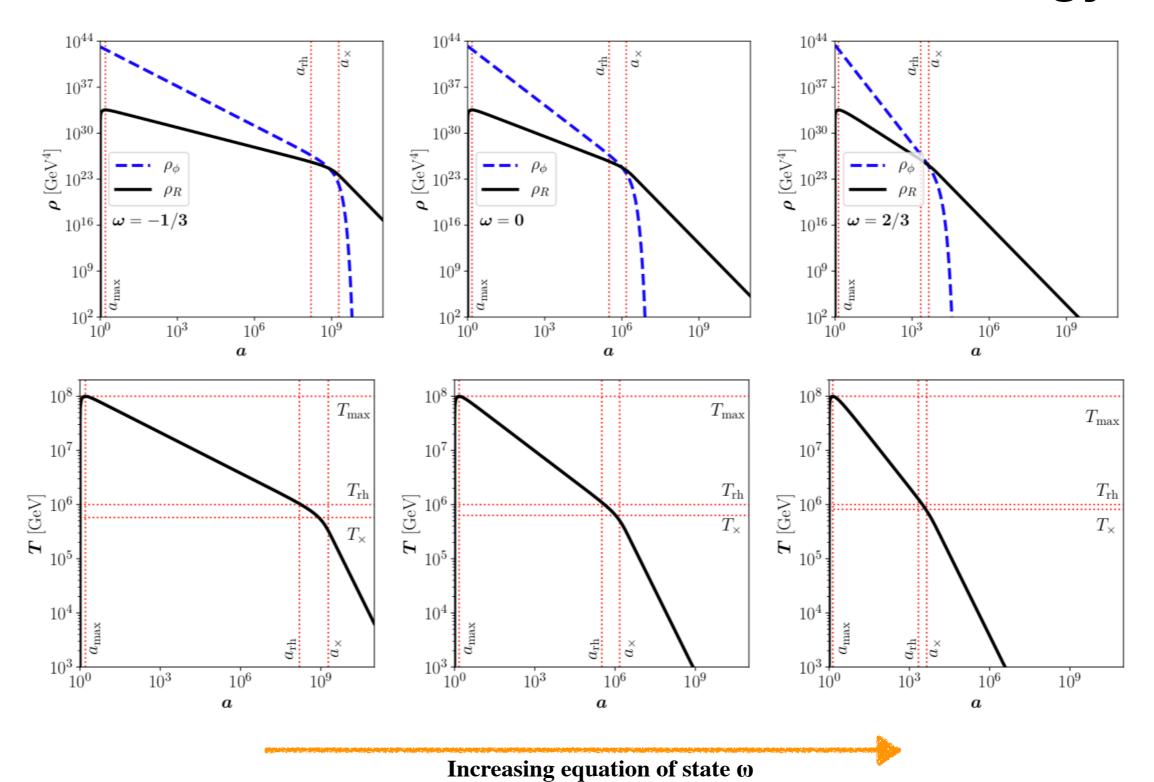
$$\rho_{\phi}(a) = \rho_{\phi}(a_{\rm in}) \left[\frac{a_{\rm in}}{a} \right]^{3(1+\omega)} = 3 M_{\rm Pl}^2 H_{\rm in}^2 \left[\frac{a_{\rm in}}{a} \right]^{3(1+\omega)}$$

$$\rho_R(a) = \frac{6}{5 - 3\omega} M_{\rm Pl}^2 H_{\rm in} \, \Gamma_\phi \, \frac{a_{\rm in}^{\frac{3}{2}(1+\omega)}}{a^4} \left[a^{\frac{5-3\omega}{2}} - a_{\rm in}^{\frac{5-3\omega}{2}} \right]$$







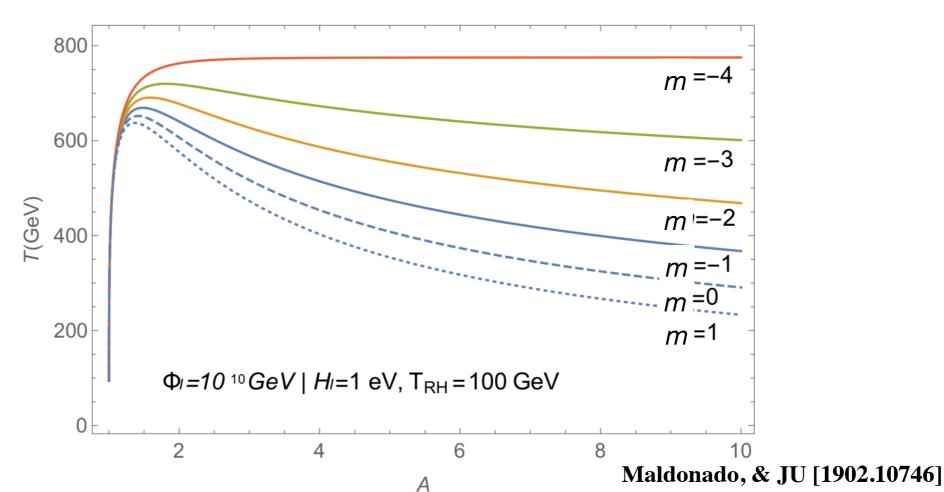


Transition from non-standard cosmology

Given the **radiation** evolution: $\rho_R(a) = \frac{6}{5 - 3\omega} M_{\rm Pl}^2 H_{\rm in} \, \Gamma_\phi \, \frac{a_{\rm in}^{\frac{3}{2}(1+\omega)}}{a^4} \left[a^{\frac{5-3\omega}{2}} - a_{\rm in}^{\frac{5-3\omega}{2}} \right]$

The **temperature**, related via $\rho_R = \frac{\pi^2 g_*(T)}{30} T^4$, evolves according to

$$T = \left(\frac{45}{4\pi^3} \frac{g_*(T_{\rm RH})}{g_*^2(T)}\right)^{1/8} \left(H_I M_{\rm Pl} T_{\rm RH}^2\right)^{1/4} \quad \left(\frac{A^{-(2+m/2)} - A^{-4}}{2 - m/2}\right)^{-4} \quad \text{where} \quad A \equiv \frac{a}{a_I} = a T_{\rm RH}$$

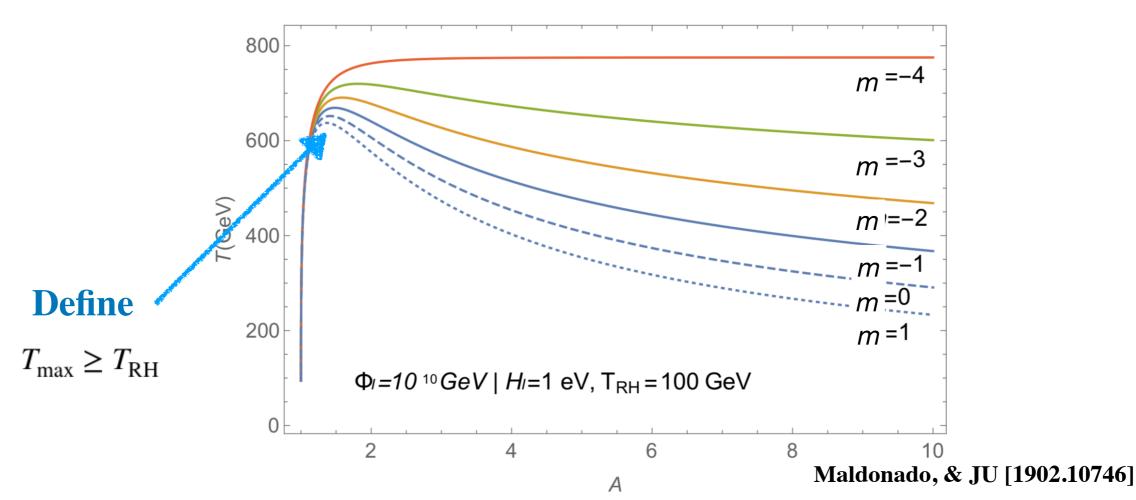


Transition from non-standard cosmology

Given the **radiation** evolution: $\rho_R(a) = \frac{6}{5 - 3\omega} M_{\rm Pl}^2 H_{\rm in} \, \Gamma_\phi \, \frac{a_{\rm in}^{\frac{3}{2}(1+\omega)}}{a^4} \left[a^{\frac{5-3\omega}{2}} - a_{\rm in}^{\frac{5-3\omega}{2}} \right]$

The **temperature**, related via $\rho_R = \frac{\pi^2 g_*(T)}{30} T^4$, evolves according to

$$T = \left(\frac{45}{4\pi^3} \frac{g_*(T_{\rm RH})}{g_*^2(T)}\right)^{1/8} \left(H_I M_{\rm Pl} T_{\rm RH}^2\right)^{1/4} \quad \left(\frac{A^{-(2+m/2)} - A^{-4}}{2 - m/2}\right)^{-4} \quad \text{where} \quad A \equiv \frac{a}{a_I} = a T_{\rm RH}$$



This change in cosmological evolution impacts the dark matter.

The comoving number density $N \equiv n \times a^3$ evolving according to

$$\frac{dN}{da} = -\frac{\langle \sigma v \rangle}{a^4 H} \left(N^2 - N_{\rm eq}^2 \right)$$

Implying at temperature T

$$N(T) = \frac{8\zeta(3)^2 g^2}{3\pi^4 (n - n_c)(1 + \omega)} \left[\frac{a_{\times}^{3+\omega}}{a_{\rm in}^{1+\omega}} \right]^{\frac{3}{2}} \frac{T_{\times}^{4\frac{3+\omega}{1+\omega}}}{\Lambda^{n+2} H_{\rm in}} \left[T_{\rm max}^{n-n_c} - T^{n-n_c} \right]$$

This change in cosmological evolution impacts the dark matter.

The comoving number density $N \equiv n \times a^3$ evolving according to

$$\frac{dN}{da} = -\frac{\langle \sigma v \rangle}{a^4 H} \left(N^2 - N_{\rm eq}^2 \right)$$

Implying at temperature T

$$N(T) = \frac{8\zeta(3)^2 g^2}{3\pi^4 (n - n_c)(1 + \omega)} \left[\frac{a_{\times}^{3+\omega}}{a_{\text{in}}^{1+\omega}} \right]^{\frac{3}{2}} \frac{T_{\times}^{4\frac{3+\omega}{1+\omega}}}{\Lambda^{n+2} H_{\text{in}}} \left[T_{\text{max}}^{n-n_c} - T^{n-n_c} \right]$$

This can be **converted into a yield** $Y(T) = \frac{N(T)}{s(T) a^3}$

And integrating to the 'end' of ϕ decays give the relic abundance $(n \neq n_c)$

$$Y(T_{\times}) = \frac{180 \zeta(3)^{2} g^{2}}{\pi^{7} g_{\star s}} \sqrt{\frac{10}{g_{\star}}} \frac{1}{(n - n_{c})(1 + \omega)} \frac{M_{\text{Pl}} T_{\times}^{\frac{1 - \omega}{1 + \omega}}}{\Lambda^{n + 2}} \left[T_{\text{max}}^{n - n_{c}} - T_{\times}^{n - n_{c}} \right].$$
with $n_{c} \equiv 2 \times \left(\frac{3 - \omega}{1 + \omega} \right)$

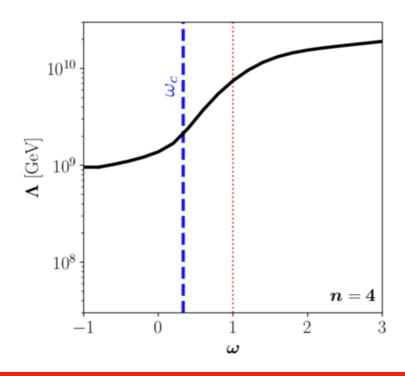
For a fixed operator dimension n (varying ω) the boost is

$$B \simeq \begin{cases} \frac{1}{3} \frac{7 - \omega_c}{\omega_c - \omega} & \text{for } \omega < \omega_c, \\ \frac{8}{3} \frac{7 - \omega}{(1 + \omega)^2} \ln \frac{T_{\text{max}}}{T_{\text{RH}}} & \text{for } \omega = \omega_c, \\ \frac{1}{3} \frac{7 - \omega_c}{\omega - \omega_c} \left[\frac{T_{\text{max}}}{T_{\text{RH}}} \right]^{\frac{8(\omega - \omega_c)}{(1 + \omega)(1 + \omega_c)}} & \text{for } \omega > \omega_c, \end{cases}$$
Critical value: $\omega_c \equiv \frac{6 - n}{2 + n}$

For a fixed operator dimension n (varying ω) the boost is

$$B \simeq \begin{cases} \frac{1}{3} \frac{7 - \omega_c}{\omega_c - \omega} & \text{for } \omega < \omega_c \,, \\ \frac{8}{3} \frac{7 - \omega}{(1 + \omega)^2} \ln \frac{T_{\text{max}}}{T_{\text{RH}}} & \text{for } \omega = \omega_c \,, \\ \frac{1}{3} \frac{7 - \omega_c}{\omega - \omega_c} \left[\frac{T_{\text{max}}}{T_{\text{RH}}} \right]^{\frac{8(\omega - \omega_c)}{(1 + \omega)(1 + \omega_c)}} & \text{for } \omega > \omega_c \,, \end{cases}$$
Critical value: $\omega_c \equiv \frac{6 - n}{2 + n}$

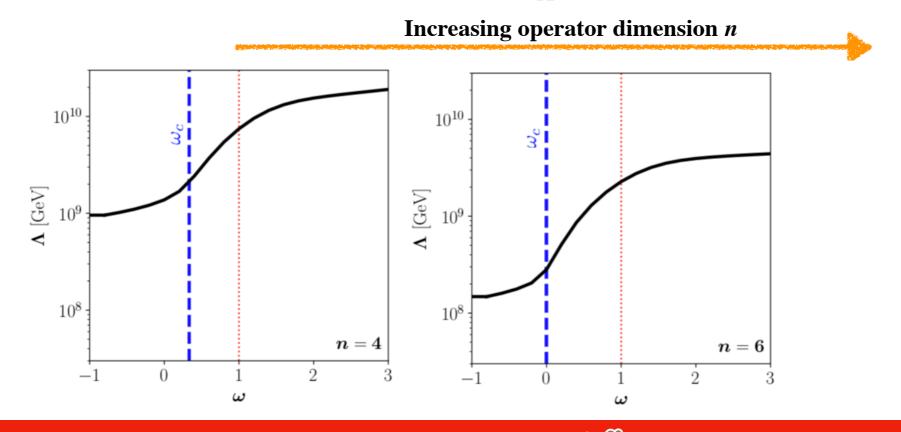
For 100 GeV DM produced via $\langle \sigma v \rangle \sim \frac{T^n}{\Lambda^{2+n}}$ to get the correct relic density one needs



For a fixed operator dimension n (varying ω) the boost is

$$B \simeq \begin{cases} \frac{1}{3} \frac{7 - \omega_c}{\omega_c - \omega} & \text{for } \omega < \omega_c \,, \\ \frac{8}{3} \frac{7 - \omega}{(1 + \omega)^2} \ln \frac{T_{\text{max}}}{T_{\text{RH}}} & \text{for } \omega = \omega_c \,, \\ \frac{1}{3} \frac{7 - \omega_c}{\omega - \omega_c} \left[\frac{T_{\text{max}}}{T_{\text{RH}}} \right]^{\frac{8(\omega - \omega_c)}{(1 + \omega)(1 + \omega_c)}} & \text{for } \omega > \omega_c \,, \end{cases}$$
Critical value: $\omega_c \equiv \frac{6 - n}{2 + n}$

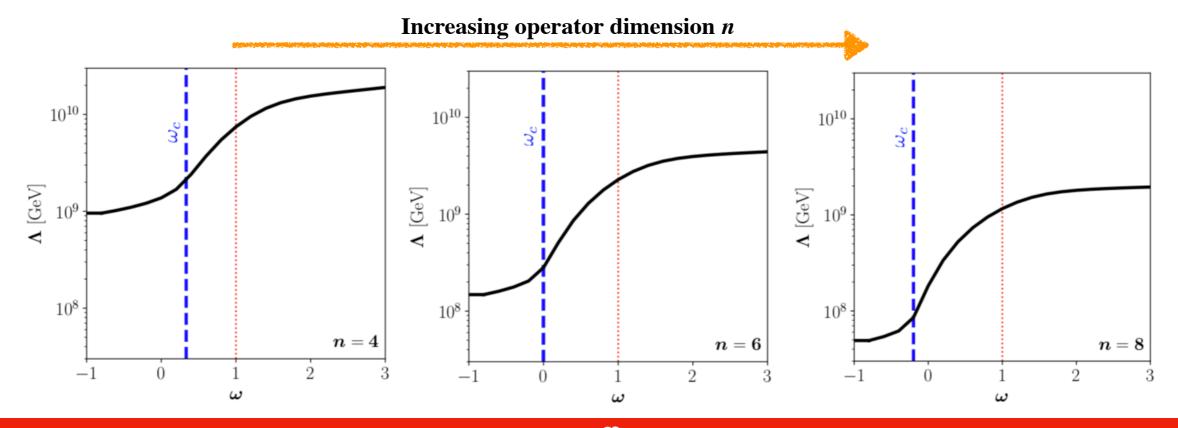
For 100 GeV DM produced via $\langle \sigma v \rangle \sim \frac{T^n}{\Lambda^{2+n}}$ to get the correct relic density one needs



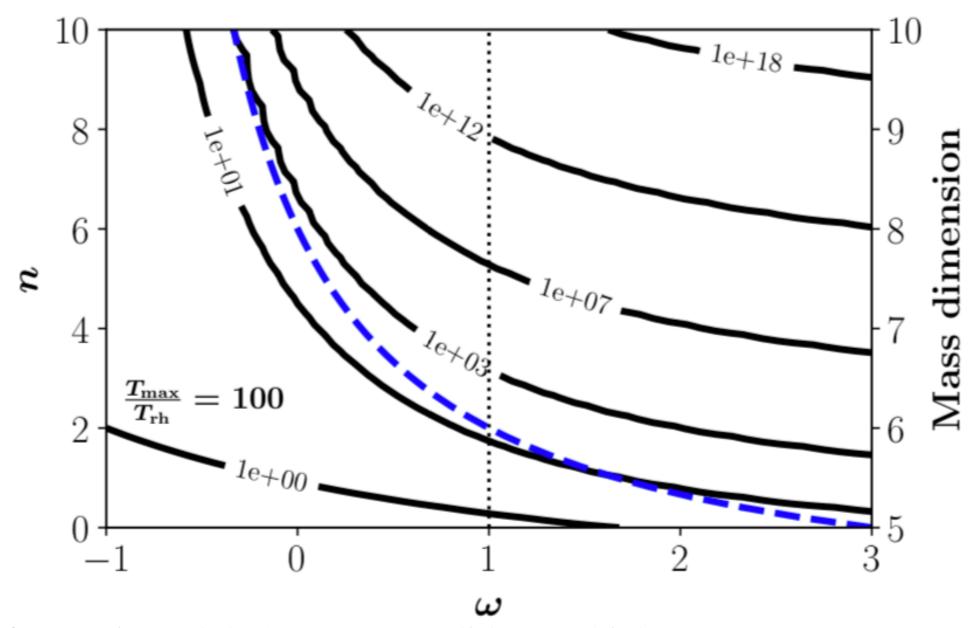
For a fixed operator dimension n (varying ω) the boost is

$$B \simeq \begin{cases} \frac{1}{3} \frac{7 - \omega_c}{\omega_c - \omega} & \text{for } \omega < \omega_c, \\ \frac{8}{3} \frac{7 - \omega}{(1 + \omega)^2} \ln \frac{T_{\text{max}}}{T_{\text{RH}}} & \text{for } \omega = \omega_c, \\ \frac{1}{3} \frac{7 - \omega_c}{\omega - \omega_c} \left[\frac{T_{\text{max}}}{T_{\text{RH}}} \right]^{\frac{8(\omega - \omega_c)}{(1 + \omega)(1 + \omega_c)}} & \text{for } \omega > \omega_c, \end{cases}$$
Critical value: $\omega_c \equiv \frac{6 - n}{2 + n}$

For 100 GeV DM produced via $\langle \sigma v \rangle \sim \frac{T^n}{\Lambda^{2+n}}$ to get the correct relic density one needs



Boosting to large abundance



Useful for motivated dark matter candidates which are **underproduced**. For example gravitino dark matter in high scale supersymmetry scenarios.

Conclusion

- Cosmological events and can drastically alter expectations for DM.
- Dilution permit correct relic density for heavier DM or smaller couplings.
- This can revive the Higgs portal (and other excluded classic models).
- Conversely, underproduced DM can be enhanced via reheating effects.
- Non standard cosmology occurs in many motivated BSM scenarios.

Thank you.