Reconstructing Non-standard Cosmologies with Dark Matter

Paola Arias, NB, Alan Herrera, Carlos Maldonado – arXiv:1906.04183 [hep-ph] NB, Fazlollah Hajkarim – arXiv:1905.10410 [astro-ph.CO] NB, Catarina Cosme, Tommi Tenkanen, Ville Vaskonen – arXiv:1806.11122 [hep-ph] NB, Catarina Cosme, Tommi Tenkanen – arXiv:1803.08064 [hep-ph]

ANTONIO NARIÑO

MOCa October 1st, 2019

Reconstructing the Equation of State of the Early Universe

Paola Arias, NB, Alan Herrera, Carlos Maldonado – arXiv:1906.04183 [hep-ph] NB, Fazlollah Hajkarim – arXiv:1905.10410 [astro-hp.CO] NB, Catarina Cosme, Tommi Tenkanen, Ville Vaskonen – arXiv:1806.11122 [hep-ph] NB, Catarina Cosme, Tommi Tenkanen – arXiv:1803.08064 [hep-ph]

MOCa October 1st, 2019

ANTONIO NARIÑO

Evidences for Dark Matter

Several observations indicate the existence of non-luminous Dark Matter (missing force) at very different <u>scales</u>!

- * Galactic rotation curves
- * RC in Clusters of galaxies
- * Clusters of galaxies
- * CMB anisotropies

Evidences for Dark Matter

Several observations indicate the existence of non-luminous Dark Matter (missing force) at very different <u>scales</u>!

- * Galactic rotation curves
- * RC in Clusters of galaxies
- * Clusters of galaxies
- * CMB anisotropies

How was Dark Matter produced in the Early Universe?

Early Universe: DM in full **thermal equilibrium** with the Standard Model.

Due to the expansion of the Universe DM particles fall **out of chemical equilibrium** and cannot annihilate anymore.

A relic density of DM is obtained which remains constant.

Nicolás BERNAL @ UAN

Due to the expansion of the Universe DM particles fall **out of chemical equilibrium** and cannot annihilate anymore.

A particle with very weak interactions decouples earlier, having a larger relic density.

A relic density of DM is obtained which remains constant.

A particle with stronger interactions keeps in equilibrium for longer, and is more diluted.

Due to the expansion of the Universe DM particles fall **out of chemical equilibrium** and cannot annihilate anymore.

A particle with very weak interactions decouples earlier, having a larger relic density.

A relic density of DM is obtained which remains constant.

A particle with stronger interactions keeps in equilibrium for longer, and is more diluted.

Nicolás BERNAL @ UAN

→ Collisionless cold WIMP Dark Matter

WIMP DM typically requires: $<\sigma v > \sim \text{few } 10^{-26} \text{ cm}^3/\text{s}$

> * GeV to TeV masses * O(1) couplings DM-SM

→ Independent from initial conditions!

WIMP DM typically requires: $\langle \sigma v \rangle \sim \text{few } 10^{-26} \text{ cm}^3/\text{s}$

- * GeV to TeV masses * O(1) couplings DM-SM
- → Independent from initial conditions!

$$\frac{dn_{\chi}}{dt} + 3 H n_{\chi} = -\langle v\sigma_{\chi}\rangle \left[n_{\chi}^2 - (n_{\chi}^{\rm eq})^2\right]$$

$$\frac{dn_{\chi}}{dt} + 3 H n_{\chi} = -\langle v\sigma_{\chi}\rangle \left[n_{\chi}^2 - (n_{\chi}^{\rm eq})^2\right]$$

Common lore: $\star < \sigma v > > 10^{-26} \text{ cm}^3/\text{s}$: DM underproduction \rightarrow Multi-component DM

* $<\sigma v > \sim 10^{-26}$ cm³/s: Standard WIMP mechanism

$$\frac{dn_{\chi}}{dt} + 3 H n_{\chi} = -\langle v\sigma_{\chi}\rangle \left[n_{\chi}^2 - (n_{\chi}^{\rm eq})^2\right]$$

"Standard" Cosmology

 $\rightarrow\,$ Early Universe dominated by SM radiation

$$\rho_R(T) \equiv \frac{\pi^2}{30} g_\star(T) T^4$$

Hubble expansion rate

$$H = \sqrt{\frac{\rho_R}{3 M_P^2}}$$

Entropy is conserved

$$s(T) = \frac{2\pi^2}{45} g_{\star s}(T) T^3$$
$$T \propto \frac{1}{a}$$

Temperature scaling

\rightarrow Early Universe dominated by a non-SM component ϕ

ω: equation of state $Γ_{φ}$: total decay width into SM radiation

$$\frac{d\rho_{\phi}}{dt} + 3(1+\omega) H \rho_{\phi} = -\Gamma_{\phi} \rho_{\phi}$$
$$\frac{d\rho_R}{dt} + 4 H \rho_R = +\Gamma_{\phi} \rho_{\phi}$$

Hubble expansion rate *E*

$$H = \sqrt{rac{
ho_{\phi} +
ho_R}{3 M_P^2}}$$

$$\frac{ds}{dt} + 3Hs = +\frac{\Gamma_{\phi}\rho_{\phi}}{T}$$

- \boldsymbol{a}_{eq} : equality $\rho_{\phi} = \rho_{R}$
- a_{c} : ϕ starts to decay
- a_{end} : end of ϕ domination era

 $(H = \Gamma_{\phi} \text{ at } T = T_{end})$

$$\rho_R(a) \propto \begin{cases} a^{-4} & \text{for} & a \ll a_{\rm c}, \\ a^{-\frac{3}{2}(1+\omega)} & \text{for} & a_{\rm c} & \ll a \ll a_{\rm end}, \\ a^{-4} & \text{for} & a_{\rm end} \ll a, \end{cases}$$

$$T(a) \propto \begin{cases} a^{-1} & \text{for} & a \ll a_{\rm c}, \\ a^{-\frac{3}{8}(1+\omega)} & \text{for} & a_{\rm c} & \ll a \ll a_{\rm end}, \\ a^{-1} & \text{for} & a_{\rm end} \ll a. \end{cases}$$

DM in Non-standard Cosmologies

$$\frac{d\rho_{\phi}}{dt} + 3(1+\omega) H \rho_{\phi} = -\Gamma_{\phi} \rho_{\phi}$$
$$\frac{ds}{dt} + 3 H s = +\frac{\Gamma_{\phi} \rho_{\phi}}{T}$$
$$\frac{dn}{dt} + 3 H n = -\langle \sigma v \rangle \left(n^2 - n_{eq}^2\right)$$

Free parameters:

- <u>Particle physics</u>
 * DM mass *m*
 - * annihilation cross section $\langle \sigma v \rangle$
- $\frac{\text{Cosmology}}{* \kappa = \rho_{\phi} / \rho_{R} \text{ at } T = m}$ $* T_{end} > 4 \text{ MeV}$
 - * equation of state $\omega \epsilon$ [-1, 1]

WIMP Paradigm in Non-standard Cosmologies

Suppose DM is discovered

and its particle physics properties are reconstructed

- If $\langle \sigma v \rangle \sim 10^{-26} \text{ cm}^3/\text{s} \rightarrow \text{standard WIMP}$
- If $\langle \sigma v \rangle \langle 10^{-26} \text{ cm}^3/\text{s} \rightarrow \text{standard WIMP mechanism fails}!$

* Can non-standard cosmologies revive the WIMP paradigm? * which non-standard cosmologies are compatible?

Reconstructing Cosmological Parameters

For m = 100 GeV and $\langle \sigma v \rangle = 3 \times 10^{-28}$ cm³/s

Reconstructing Cosmological Parameters

For m = 100 GeV and $\langle \sigma v \rangle = 3 \times 10^{-28}$ cm³/s

Case 1: $T_{eq} \ll T_{fo}$

$$\frac{dY}{dx} = -\frac{\langle \sigma v \rangle s}{H x} \left(Y^2 - Y_{\rm eq}^2 \right)$$

Usual case with a late entropy injection

- * SM energy density dominant during freeze-out → Hubble rate dominated by SM radiation
- * Entropy conserved during freeze-out $\rightarrow T \sim a^{-1}$

* Late DM dilution when ϕ decays

$$Y_{\rm obs} = \frac{Y_0}{D} \simeq \frac{15}{2\pi\sqrt{10\,g_{\star}}} \frac{x_{\rm fo}}{m\,M_P\,\langle\sigma v\rangle} \left[\frac{1}{\kappa} \left(\frac{T_{\rm end}}{m}\right)^{1-3\omega}\right]^{\frac{1}{1+\omega}}$$

Cosmology: $\kappa \propto T_{\rm end}^{1-3\omega}$

Case 2:
$$T_{c} << T_{fo} << T_{eq}$$

$$\frac{dY}{dx} = -\frac{\langle \sigma v \rangle s}{H x} \left(Y^2 - Y_{\text{eq}}^2 \right)$$

Case with a late entropy injection

* ϕ energy density dominant during freeze-out \rightarrow Hubble rate dominated by ϕ

* Entropy conserved during freeze-out $\rightarrow T \sim a^{-1}$

* Late DM dilution when ϕ decays

$$Y_{\rm obs} = \frac{Y_0}{D} \simeq \frac{45(1-\omega)}{4\pi\sqrt{10g_\star}} \frac{\sqrt{\kappa}}{m M_P \langle \sigma v \rangle} x_{\rm fo}^{\frac{3}{2}(1-\omega)} \left[\frac{1}{\kappa} \left(\frac{T_{\rm end}}{m} \right)^{1-3\omega} \right]^{\frac{1}{1+\omega}}$$

Cosmology: $\kappa \propto T_{\rm end}^{2\frac{1-3\sigma}{1-\omega}}$

Case 3:
$$T_{end} << T_{fo} << T_{c}$$

Freeze-out and decay happen simultaneously

- * ϕ energy density dominant during freeze-out \rightarrow Hubble rate dominated by ϕ
- * Entropy in <u>not</u> conserved during freeze-out $\rightarrow T \sim a^{-3(1+\omega)/8}$
- * DM is diluted while produced

$$Y_{\rm obs} = \frac{N_0}{s \, a^3} = \frac{45(1-\omega)}{4\pi} \sqrt{\frac{1}{10g_{\star}}} \frac{1}{M_P \langle \sigma v \rangle} \left[T_{\rm fo}^{4(\omega-1)} \, T_{\rm end}^{3-5\omega} \right]^{\frac{1}{1+\omega}}$$

Cosmology: independent on κ

Case 4: $T_{fo} << T_{end}$

Freeze-out in standard cosmology!

 ϕ decays at very high temperatures, when DM is still in equilibrium with the SM.

Reconstructing Cosmological Parameters

For m = 100 GeV and $\langle \sigma v \rangle = 3 \times 10^{-28}$ cm³/s

Varying the Particle Physics

Nicolás BERNAL

Varying the Cosmology

Breaking the Degeneracy

2 free parameters and 1 observable: κ and T_{end} are degenerated

 \rightarrow Another observable is needed

GWs as probes of the early Universe

- GWs decouple upon production
- GWs spectrum:
 - * Primordial spectrum at production
 - * Propagation
- But difficult to detect :-/

GWs as probes of the early Universe

- GWs decouple upon production
- GWs spectrum:
 - * Primordial spectrum at production
 - * Propagation
- But difficult to detect :-/

$\rightarrow\,$ GWs do probe the early Universe

Primordial Gravitational Waves

- GW are represented by spatial metric perturbations (transverse & traceless).
- The evolution of GWs is described by the linearized Einstein eq.

$$\ddot{h}_{ij} + 3H \,\dot{h}_{ij} - \frac{\nabla^2}{a^2} h_{ij} = 16\pi \, G \, \Pi_{ij}^{TT}$$

 Π^{TT} is the transverse-traceless part of the anisotropic stress tensor $\Pi_{ij} = \frac{T_{ij} - p g_{ij}}{a^2}$

• Primordial GW spectrum

$$\Omega_{\rm GW}(t,k) = \frac{1}{\rho_c(t)} \, \frac{d\rho_{\rm GW}(t,k)}{d\ln k} = \frac{1}{12 \, a^2(\eta) \, H^2(\eta)} \mathcal{P}_T(k) \, \left[X'(\eta, \, k) \right]^2$$

with the primordial tensor power spectrum $\mathcal{P}_T(k) = A_T \left(\frac{k}{\tilde{k}}\right)^{n_T}$ and the transfer function $\frac{d^2 X(u)}{du^2} + \frac{2}{a(u)} \frac{da(u)}{du} \frac{dX(u)}{du} + X(u) = 0$. Nicolás BERNAL @ UAN

Breaking the Degeneracy

2 free parameters and 1 observable: κ and T_{end} are degenerated

 \rightarrow Another observable is needed

Primordial Gravitational Waves are sensitive to the expansion rate of the Universe!

Conclusions & Outlook

- Dark Matter exists
- The nature of Dark Matter is still unknown
- Understanding Dark Matter is one of the major problems in particle physics
- WIMP paradigm is by far the favorite scenario
- We do not know much for the cosmology before BBN
- Non-standard cosmologies are completely plausible and well-motivated scenarios!
- Expansion of the early Universe could have been driven by an *extra component* ϕ
- Non-standard cosmologies open up the particle physics parameter space beyond the canonical $\langle \sigma v \rangle$ = few 10⁻²⁶ cm³/s
- Non-standard cosmologies with $\omega = 0$ (dust) can make the WIMP mechanism viable for m > 30 MeV.
- Need other observables sensitive to the cosmology: \rightarrow PGW

Muchas gracias ve!

\rightarrow Early Universe dominated by a non-SM component ϕ

ω: equation of state $Γ_{φ}$: total decay width into SM radiation

$$\frac{d\rho_{\phi}}{dt} + 3(1+\omega) H \rho_{\phi} = -\Gamma_{\phi} \rho_{\phi}$$
$$\frac{ds}{dt} + 3 H s = +\frac{\Gamma_{\phi} \rho_{\phi}}{T}$$

(just to keep track of the relativistic degrees of freedom!)

Hubble expansion rate *H*

$$I = \sqrt{rac{
ho_{\phi} +
ho_R}{3 \, M_P^2}}$$

DM freeze-out in Non-standard Cosmologies

For m = 100 GeV and $\langle \sigma v \rangle = 3 \times 10^{-28}$ cm³/s

Varying the Cosmology

Nicolás BERNAL