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MobDIFYING GRAVITY

THEOREM (LOVELOCK'S THEOREM)

In a four-dimensional space-time the only divergence-free symmetric rank-2
tensor constructed solely from the metric g.p and its derivatives up to second
differential order, and preserving diffeomorphism invariance, is the Einstein
tensor plus a cosmological term:

1
£oB — a\/jg [Raﬁ_ zgaBR] +AJjgg“B,

where a and A (cosmological constant) are constants, and R,g and R are the
Ricci tensor and scalar curvature, respectively.

RESTRICTIONS TO LovELOCK'S THEOREM

@ Consider extra degrees of freedom more than the metric tensor.
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In a four-dimensional space-time the only divergence-free symmetric rank-2
tensor constructed solely from the metric g.p and its derivatives up to second
differential order, and preserving diffeomorphism invariance, is the Einstein
tensor plus a cosmological term:

1
£oB — a\/jg [Raﬁ_ zgaBR] +AJjgg“B,

where a and A (cosmological constant) are constants, and R,g and R are the
Ricci tensor and scalar curvature, respectively.

RESTRICTIONS TO LoVELOCK'S THEOREM
@ Consider extra degrees of freedom more than the metric tensor.
@ Work in a space with dimensionality different than four.

© Accept higher than second order derivatives of the metric in the field equations.

@ Consider non-locality.
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GAUGE FIELDS AND P-FORMS IN COSMOLOGY

Formalities

Given a p-form A(p) sy -1, its dynamics is introduced by the field
strength F(,) = dA, + Ay A A,

1

F(P) = HV[MA ]qu1 Adxt2 ..o A dxter,

(P23 Hp+1
In addition the Hodge dual of the field strength is defined as
I:_(p) _ ) FIM /Jp+1‘

VI VDp—1 m HHp+1V1-VD—p-1" (p)
The higher rank of a p—form in D dimensions is obviously D, this is:
Ap o \/—gey..Ddx1 A AdXP,

which is proportional to the D—dimensional volume element
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Formalities

Given a p-form A(p) sy -1, its dynamics is introduced by the field
strength F(,) = dA, + Ay A A,
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In addition the Hodge dual of the field strength is defined as
I:_(p) _ ) FIM /Jp+1‘

VI VDp—1 m HHp+1V1-VD—p-1" (p)
The higher rank of a p—form in D dimensions is obviously D, this is:
Ap o \/—gey..Ddx1 A AdXP,

which is proportional to the D—dimensional volume element
Gauge Invariance

A(p)u«-wp - A(p)’””‘“p + a[m E(P*UIJZ“'IJP]'
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GENERAL PROCEDURE

1 _ D
5(p)——2/F( /\*F = p+1 /d X\/— F

where FEy = Fipynu, gy Fip) !> 471

In D—dimensions we have the following general form to couple p—forms
of different rank

Liixing = Gprpo-p (@) Xipr) A+ A Xip,),
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GENERAL PROCEDURE

1 _ D
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GAUGE FIELDS AND p-FORMS IN COSMOLOGY GENERAL PROCEDURE

Finally, we add gravity to the system.

where

L,=—

O A
S:/d X\/E TR_£¢_EP ,

D—1
1
2 Z fo(@)Fn) N xFimy + Z Gp1pr-pe (P Xip) A=+ A Xip,),
n=1 (P1p2-+-pr)
D—1
1 fn(9)
2 (n+1)!
n=1 (P1p2--pr)
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ToproLoGIcAL TERMS

The Chern-Pontryagin density or 6—term:

1 b
P = o) / V=g F iy Fip™ 7"

manifestly independent of the metric. Nevertheless, once it is coupled to
a scalar field,

S¢cp = /91(¢)F(p) N Fp),

it becomes relevant for the dynamics of the scalar and the p—form field.
For odd dimensions D = 2p 4+ 1 we have the Chern-Simons invariant

S¢cs = / g2()Ap) A Fip),

For even dimensions, we have the so called BF —theories which couples
a p—form with the field strength of a (p — 1)—form.

S¢BF = / g3()Ap) A Fio—p—1),
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The 4-D case:

o O-forms: scalar fields with kinetic term %6u¢6“¢
o 1-forms: gauge fields A;, with Maxwell-like terms }F,, F*"
o 2-forms: Ay, with field strength Fux = 0,A2 v 15 FvaFP"
@ 3-forms: Field strength proportional to volume elements

o< dx! A dx? A dx3 A dx?; redefinition of potential for scalar field

With the general procedure we arrive to the general Lagrangian coupling
p—forms in 4 dimensions

g1(¢) F
‘CP(¢'AP) = _i Z (n + 1)' (I7) - 24 (3) - 4 F(1)u1u2F(1)u”J2

g2(9) o
> A Fa™.
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EQUATIONS OF MOTION AND ENERGY-MOMENTUM TENSOR

Energy-momentum tensor

o _ _ 2 0V=gLy)
Vg 89t
1

1 1
= f1(¢) (Fﬁ)auzFﬁ)Buz - 49aBF(21)) + f(¢) (ZF(Z)GUZMF(Z)BUZW - ﬁgasﬁzz)

1 1 fa() -
+ 13(¢) (6":(3)0!12!12!14 FB)BUZWM - 4890(3,:(23)) — WF(})QQB.
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EQUATIONS OF MOTION AND ENERGY-MOMENTUM TENSOR

Energy-momentum tensor

o _ _ 2 0V=gLy)

ap \/?g 5ga8
1 1 1
= f1(¢) (Fﬁ)auzFﬁ)Buz - 49aBF(21)) + f(¢) (Zﬁzwuzuf(zw”“ - ﬁgasﬁzz)
1 s ] fa(@) ~
+ 13(9) (6F(3>auzuwF<3)B” o — 489aBF(23)) - 427453)9«1:&
Equations of motion for ¢ and A,
o _ 1 8v=gLn) _, _ 1 0V=aLs)
5= — =

= =0, Eppnewy = —=
\/a 5¢) 1 P \/g 6A(Z1)/12 Hp
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THE cCOUPLED 1—FORM AND 2—FORM SYSTEM

V4 (A@F + g1(@)F i + g2B ) =0, ¥ (B($)Hyva) +
Solution of the 2—form system
T
3g2

V[”f2(¢)HV], VH = MHH,

FHv =
392
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P—FORMS IN FOUR DIMENSIONS

THE cCOUPLED 1—FORM AND 2—FORM SYSTEM

9 (A Fu + 91() P+ 92Bu ) =0, V¥ (f2(@)Huva) +

Solution of the 2—form system

v 1
3g2

v (ﬁ(qb)v[y Vo + 2 g‘j’)

vEL@)HY, V= f2(¢)

¢—geuvasv“’vm) = m*($) Vs,

TN

where m?(¢) = 3?,2.

N
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THE cCOUPLED 1—FORM AND 2—FORM SYSTEM

Ve (f1(¢)F“V + g1(¢)":_uv + gZBuV) =0, V¥ (f2(¢)Huva) + %'Eva

Solution of the 2—form system

v _ _L [ v — f2(¢) Q
PP o= s Vg, = S,
A0V + 25 G T V) = o)W

where mz(q,’)) = 3—?(2%
Sv =3 [ dxv=g [AOIWL W + g1 (@Wa 1 + 2028V, V],

with W,, = V|, V,). Using the gauge V,V A" = ”;—favv we obtain

o+ f H
f ! ﬁnuvaﬁvaAB - 7/4 = Or
1

A, — R, A"
o JAY 4 ; F

(VA = VA +
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3—FORM SYSTEM

The 3—form evolves independently from the other antisymmetric tensors.

V¥ (5(9)Frvag + f4($)v/=g€uag) = 0.
Gauge A(3)0[j =0 and VkA(3)0[k =0.

f a’
W®M+(é—4a)Atm—— V= gevijk-

The solution is simply:
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- [ dr'mwu—wmn-

This solution is valid for any Friedmann cosmology and for any time
dependence of the couplings £3, f4.
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3—FORM SYSTEM

The 3—form evolves independently from the other antisymmetric tensors.

VH (@) FErvag + f4($)v=geuwag) = 0.
Gauge A(3)0[j =0 and VkA(3)0,'k =0.

f a
Alyijk + (é - 40) Alyijk = — \/ G €0ijk-
The solution is simply:

- [ dr'mg(;ﬁ,))(c—wf’)))-

This solution is valid for any Friedmann cosmology and for any time
dependence of the couplings £3, f4.

2
Tﬂz—(@fﬂ@%—mww Gop.

which is a cosmological constant term.
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Previous models of inflation and/or dark energy:

@ Germant & Kehagias (2009)

F2 A | RALA™ | Ay RVA]

R
_ 4 — oy
S‘/dXV I\22" 127 4 6 2

@ Koivisto, Motta & Pitrou (2009)

V(A?)

_ (AZR)

R F?
— D, /= -
S_/dx g(2K2 2 2n!

(n+1)!

@ Ito & Soda (2015), Ohashi, Soda & Tsujikawa (2013)

R 1 * 1
S= [ a5 | 5 - 50800~ VIg) = 4 FOF;
p=2
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Effect of the 3—form coupled system

The Einstein equations could be written as

1
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with va the energy-momentum tensor for the scalar field,
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EFFECTIVE ENERGY-MOMENTUM TENSORS

Effect of the 3—form coupled system

The Einstein equations could be written as

1

Ry — 5

Rguy = 8nG(TS, + TP,),

with T,f, the energy-momentum tensor for the scalar field,

1
T = 0490ud — 59, 0590° ¢ — gusV(9),

and T}, the associated with the 3-form

, _
O _ 2|V yop 1 s 5B
Tog =17 5 PO FRravep = 5908 | Va5, H Va5 | |
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INGREDIENTS

e Let us asume a FLRW Universe

ds? = —dt? 4 a?(t)dx>.

e Moreover, we fix the form of the 3—form as

AB)pus = As(t)dx Ady Adz,
. f . f
A3 + [2; — 3/—/] A3 = —9(]3)71

1 1

)23

. Q_
with 3=

- ps 6\ 3
P = ) I
’ (f% 2)"

being p3 an integration constant.
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INGREDIENTS

e Evolution for the scalar field
RA
¢>+ V¢+3H¢—y3f1f1¢ i 95 =0.
e Including matter

T;ﬂ/ = (pm + pm)uuuv + pmguv,

being u* the 4-velocity of the fluid with u,u” = —1, p, the energy
density and p,, the preassure.
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FRIEDMANN EQUATIONS

: 1
(P + pm + pp) 2H +3H? = —— (ps + pm + Pp) -

3H? = —
Mp, Mg,

with

1. T, 2=V
po=50"+V(9). ps=50"—V(9), W‘P:Zi:M'
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FRIEDMANN EQUATIONS

. 1
3H2:M—%l(p¢+Pm+Pp)' 2H+3H2=—M7I%I(P¢+Pm+PP)‘
with
3 be_ -V

Ps 12+ V(g)
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DYNAMICAL SYSTEM

Let us define the following variables

18 v ] VvV P_\/EﬁAg
\@Mle, \@Mpl H ' ’ \/EMP[HG3’

using solution for A3 with 8 = 0. Friedmann equation reads

Total dark energy density parameter

Qpe = X?+ Y? + P35,

Effective E.o.S.

+po +
wopy = P EPeT P

H
" Pm+p+pp H?'

WI N
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Critical Points

| Point | X \ Y ‘ Ps ‘ Weif | Qpe
O 0 0 0 W 0
Al =1 0 0 ! !
A 2
B 7 Vi-% 0 B 1
c Vs Vs o v | g
2 A
D 0 \/27A Py -1 !
£ 2y 0 VI-% | -1+ % 1
£Vt | 0 [VHERE] we |
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Point O: Since Qpg = 0, this point corresponds to a matter dominated
universe with Q, = 1 with no acceleration wefr = w,,.

Points AL: In these two points wesr = 1 corresponding to stiff matter, with
no acceleration.

Point B: Represents acceleration when wesr < —%, i.e. for A2 < 2. When
A — 0, this point represents a de Sitter expansion with wer = —1.

Point C: This point represents a so-called scaling solution where the
effective EoS matches the matter EoS. Explicitly (?DE = 3(%2%) — 1, thus
0<Qpe<1and0< Q, =1—Qpe < 1. Since, werf = w,y,, there is no

acceleration.

Point D: Since Qpr = 1 it describes an accelerated expansion.

Point £: Accelerated expansion for y = 0, i.e. a constant coupling between
the scalar field and the 3—form. We can also have acceleration providing
2 -1

i . ; ; ; Q, _ 4
Point F: New scaling solution. In this case we have 5= = ST 1,

and likewise 0 < Qpe < 1, 0 < Q,; < 1. This point could be of potential
interest for the coincidence problem. Nevertheless, there are no
acceleration, due to wefr = wy,.
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. %02 O_Z/ - 00, OZ'
0.6 0.6
0.8 0.8
1.0 1.0
D D
05 P 05 Py
@) O,C,F
B 0.0 B 0.0
0.0 0.2 0.0
0.5 X 0.6 04 ¥
(A) (8)
Ficure: (a) the coupling constants are set to be A =1,y = —0.4 in a stiff matter
universe w, = 1. The number of e-foldings runs from 0 to 20. (b) same as plot
(a) but with a cosmological constant-like term in the matter sector (w,, = —1).

In this particular case, the points C and F correspond exactly to the origin O.
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CONCLUSIONS

@ p-forms as interesting approach to dark energy and/or inflation
issues.

@ The general constuction of coupled p-forms only allows a BF —term;
other controbutions are written as Maxwell-like terms for each
p-form.

© The coupled 1—form and 2—form system could be written as an
action for a massive vector field. That means, a mass generation by
kinetic couplings of different p-forms.

@ Non-trivial dynamics of the scalar-3-form coupled system. The
homogeneous evolution of the 3-form makes this system only
interesting at background level.

© The dynamical system analysis shows some interesting features, in
particular the existence of scaling solutions of great interest for the
coincidence problem.
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