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Double beta decay

“ué Even Mass @ Odd Mass -
% Number = Number (A’Z) r (AiZ+2) + 2e +2Ve
g N.Z odd g I
- “ 1 §BF BB \0 i .[v
. - uppressed ~10°! o . e
! 7 p S} < . ’ Maria Goeppert-
Mayer proposed
| double beta decay
- o 2\’ .
B B* BB In 1935.
| | | | | | | ! | 107
Z-2 Z-1 7 Z+2 742 Z-2 Z-1 7 Z+2 742 :
Atomic Number Atomic Number s 81
From S. Dell'Oro et al., arXiv:1601.07512 % :
£ 6
* First direct observation was made using *Se in 1987. 5 |
* Typical lifetimes of the order of 10 — 10%! years. s |
* This decay is only possible if the Z+2 nucleus is s 2
stronger bound than Z nucleus. al
* [ decay to the Z + 1 must be either energetically e

forbidden or highly suppressed. Atornic Number Z



Neutrinoless double beta decay
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hypothetical process
Proposed by W.
Furry in 1939

m,#0

Lepton number
violation

My, can be inferred

from OV(3[3
measurements.

mepg = E Uezz T1;| Majorana
7

Effective

mass

In 1937, Ettore
Majorana predicted
that some class of
fermions could be

their own antiparticle.



Considerations for a Ovpp experiment (1/3)

Ovf3B signature ...

> Searches for a Ovf33 signal rely on the measurement of sum kinetic

energy of the two emitted electrons.

> Itis expected to observe a mono-energetic peak at the Q-value of the
transition between Z and Z+2 nucleus.

> Despite this very clear signature, the detection of the 2e is

complicated by the presence of background events in the large mass
(enriched material is a necessary condition).

> Topology of decay electrons can be taken as an extra signature (two

electrons from a common vertex)
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For the case of a Mg = 50 meV (T°,,= 10%° —

10?7 y.), macroscopic masses of 33 isotope
of the order of 100 kg are needed, for one
year of exposure time, to observe 1 decay !




Considerations for a Ovpp experiment (2/3)

Sensitivity ...

> All double beta decay experiments have
to deal with non-negligible backgrounds. b = M . t . AE
~ The baCkground Is proportional to the c: background rate (per unit energy, mass and time)
exposure Mt and the energy resolution
AE of the detector. c A\E 1/4
/
- . S(m,gfg):/l V1/€
» Thus, background limits dramatically the Mt

sensitivity of a 2[33-experiment, improving
only as (Mt)Y4,



Considerations for a Ovpp experiment (3/3)

Energy resolution ...
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> Detectors with good energy resolution (< ~1 %
T 0 S AT B FWHM) can give an optimal signal/background
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> Energy resolution depends on Ov( background type:
contamination of detector components, cosmogenics,
intinsic 2vp decays, etc.



NEXT Experiment
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DBDM (at LBNL)

NEXT Phases

NEXT-White (NEW) (at LSC)

.I,“im o

NEXT-100 (at LSC)

Goals : To demonstrate
the robustness of the

technology, its excellent
resolution and its unique

topological signal.

Goals :
To validate the HPXe-EL technology in a large-
scale radiopure detector.
To compare background model with data.
To study energy resolutions and the background
rejection power of the topological signature.
To measure 2vp[3 decay mode.

Goal : Ov(33 decay search

NEXT-tonne ( ~ 1000 kg)
[Future Generation ...]




NEXT concept

High-pressure xenon gas Time Projection Chambers (TPCs) with electroluminescent

amplification of signal (HPXe-EL)

* Isotope: gaseous %¢Xe (relatively cheap and easy to

TPB coated
enrich and purify). , Xeno o

i-.surfaces

* High Pressure Xenon TPC (operation 10-20 bar).

* EL amplification allows to achieve excellent energy
resolution (< 1 % FWHM @ Q-value).

* Provides a topological signature (track of the two electrons)
to improve the background rejection.

TRACKING PLANE (SiPMs)
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* Itis built using radio pure materials. Isotope B B(0v) Half-life limit  Natural Q-value (MeV)
(years) Abundance [%]
ey >14 x 102 [31] 0.187 4.2737
6Ge =3.0 x 10 [32] 7.8 2.0391
825a >1.0 x 102 [33] 9.2 2.9551
100Mo =11 x 1024 [34] 9.6 3.0350
B30T >4.0 x 10%* [35] 345 2.5303
136X e >11 x 10% [36] 8.9 2.4578
150N d >1.8 x 1022 [37] 5.6 3.3673




NEXT-White (1
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In honour of
James White

NEXT-White is a 1:2 scale model of the NEXT-100
detector

12)

TPC parameter Nominal
Pressure 15 bar
EL field (E/P) | 2.2kV cm™! bar™!
EL gap 6 mm
Veate 16.2kV
Length 664.5 mm
Diameter 454 mm
Fiducial mass Skg
Drift length (530.3 £2.0) mm
Drift field 400 Vem™
Veathode 41 kV




NEXT-White (2/2)

Time Projection Chamber:

5 kg active region(@15bar), 50 cm drift length

Pressure vessel:
316-Ti steel, 30 bar max pressure

Tracking plane:
1,800 SiPMs,
1 cm pitch

Energy plane:

v 12 PMTs,
operating at vacuum.
30% coverage

A ——

Inner shield:
copper, 6 cm thick

Mother can:

12 cm copper plate that
separates pressure from
vacuum and ads shielding.

11



Principle of operation (1/2)

=> A charged patrticle in the dense gas loses
energy by ionizing and exciting atoms of the
medium.

> The excited atoms return to the ground state
by a prompt emission of VUV (172 nm)
scintillation light (S1) giving the starting time
of the event.

=>|onization electrons drift toward the TPC
anode where they produce an amplified signal
(S2) inside EL region.

=>S1 and S2 signasl are recorded by the PMTs.
=>S2 signal is used to trigger the data

acquisition and to measure the total energy
deposition of the event.
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Principle of operation (2/2)

=>The time difference between S1 and S2 signals
provides the timing information used to localize the
event within the drift volume.

> The S2 signal is also recorded by the dense grid of
SiPMs (tracking plane).

=>This information allows to establish the transverse
position of the arriving ionization electrons with a
precision of a few millimeters.
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Results about calibration using 2™Kr decays

(NEXT Collaboration, G. Martinez et al., arxiv:1804.01780 ) 8Rp
|=5/2-
To get a correct measure of the energy of
an event in NEXT-White it is necessary to samy EC: T1,=86.2d
correct two instrumental effects: 1=1/2- r
a) The finite electron lifetime (attachment of Top=183h
Ionizationelectrons) a=2010

b) The dependence of the light detected by the
energy plane on the (x,y) coordinates.

Kr calibrations offers a power tool to
measure and correct both effects !

I=7/2+

[=9/2+

E = 32.1517(5) keV

T1,r2 =154.4 ns

a=17

E = 9.4058(3) keV
83Kr

chamber.

* As 8mKr decay results in a point-like deposition.

* Arubidium source (small zeolite balls) are stored in a specific section of the gas system.

* The 8™Kr nuclei are produced after decay of 3Rb by EC and flows directly inside the gas

* The total released energy sums 41.5 keV and the ground state of #Kr is stable.
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Lifetime map and energy map
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The fit used to obtain the lifetime maps

allows correct the sum of the PMT
energies for each bin. (Example for the
region x=[0,10] mm, y=[0,10] mm)
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Summary

Ovp( decay search requires a dedicated experiment that must meet requirements
such as the ability to measure the signature, effectively reduce all background and
a high resolution.

NEXT-White detector provides a novel approach to Ov33-searching detector by
combining two different technologies.

NEXT-White detector has a high resolution and an extra way to identify the
signatures through a topolgy track of the electrons.

Lifetime maps and energy maps can be obtained through Krypton calibration to
measure the energy properly of any event in the NEXT-White detector.



Thank you for you
attention
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The Race to Ovf3f3

* [t's impossible to optimize all features simultaneously.

* Many experiments using different techniques and isotopes, which exploit some of
them.

source = detector source = detector
| /§r/\/§/\ - i e
Y __source & :
e_
f ‘ % g_
S.Dell'Oro et al,,
Advances in High Energy Physics,
(2016) 2162659
* The isotope itself is also * Electrons must leave the
the calorimetric medium. source material to be
* Good scalability. detected.
* Techniques: diodes, * Poor energy resolution.
bolometers, TPCs, liquid * Bad scalability.

scintillators loaded with
Isotope. ..



The Radon Problem

* Rn gas produces Bi-2 14 and TI-208, very
dangerous.

 Airborne Rn in the lab can be reduced by a
radon abatement system down to ~ mBg/m?.
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* Rn emanation from detector
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components and getters gets into
active volume.

2Rn Activity Ba/mY)  JHEP 1605 (2016) 159 * Rn charged daughters stick to internal
: surfaces.
* Radon emanation measurements for all * A reduction to few mBg/m3 would
detector materials. lower Rn contribution to the level of
* Alternatives to high sources of Rn such as the rest of background.

SAES hot getters are explored (e.g.,, Ca-based
chips).



Is daughter ion tagging possible”?

- Active R&D in 36Xe experiments (liquid and gas) to detect 3%Ba** ion:

- Calorimetry

* Double-electron topology

1

- If successful, one would be left with B32v background only!
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