Beyond the standard model from noncommutative geometry

Fredy Angel Jimenez Giraldo[†]

July 30, 2018

[†]Instituto de Física, Universidad de Antioquia

1/22

0 0 0 0

Contents

1. What is noncommutative geometry?

2. Classification of almost-commutative spaces

3. Beyond the standard model

4. Outcomes and outlooks

5. References

Riemannian geometry \Leftrightarrow algebraic picture

spectral triple := { $C^{\infty}(M), \underbrace{\mathcal{H}}_{Hilbert}, \mathcal{D}$ }

 $(M, g_{\mu\nu}) \Leftrightarrow C^{\infty}(M)$ \downarrow

Maths: Riemannian geometry \Leftrightarrow algebraic picture $(M, g_{\mu\nu}) \Leftrightarrow C^{\infty}(M)$ spectral triple := $\{C^{\infty}(M), \mathcal{H}, \mathcal{D}\}$ Hilbert, Hermit.

Maths: Riemannian geometry \Leftrightarrow algebraic picture $(M, g_{\mu\nu}) \Leftrightarrow C^{\infty}(M)$ spectral triple := { $C^{\infty}(M), \mathcal{H}, \mathcal{P}$ } + order axioms Hilbert, Hermit. 0 0 0 0 0 Maths: Riemannian geometry \Leftrightarrow algebraic picture $(M, g_{\mu\nu}) \Leftrightarrow C^{\infty}(M)$ spectral triple := { $C^{\infty}(M)$, \mathcal{H} , \mathcal{D} } + order axioms Hilbert Hermit. 0 0 0 0 0

$C^{\infty}(M)$?? ... it is a commutative one

$C^{\infty}(M)$?? ... it is a commutative one

$C^{\infty}(M)$?? ... it is a commutative one

... if we include noncommutative like: $Mat_{(n \times n)}$

$C^{\infty}(M)$?? ... it is a commutative one

... if we include noncommutative like: $Mat_{(n \times n)}$ { $Mat_{(n \times n)}, H_F, D_F$ } + Order axioms

$C^{\infty}(M)$?? ... it is a commutative one

... if we include noncommutative like: $Mat_{(n \times n)}$ { $Mat_{(n \times n)}, H_F, D_F$ } + Order axioms

The geometry of a finite space

Physics:

 $\underbrace{M}_{space-time} \times \underbrace{F}_{finite}$

Physics:

 $M \times F$ space-time finite

$\{C^{\infty}(M), \mathcal{H}, \mathcal{P}\} \otimes \{Mat_{(n \times n)}, H_F, D_F\}$

Physics:

 $\underbrace{M}_{space-time} \times \underbrace{F}_{finite}$

$\{C^{\infty}(M), \mathcal{H}, \mathcal{D}\} \otimes \{Mat_{(n \times n)}, H_F, D_F\}$

 $D = \mathcal{D} \otimes \underline{1_n} + \underline{\gamma_5 \otimes D_F}$

continuous

discrete

 $D = \mathcal{D} \otimes 1_n + \gamma_5 \otimes D_F$ continuous discrete

Marck Kac (1966): Can one hear the shape of a drum?

 $D = \mathcal{D} \otimes \underline{1}_n + \underline{\gamma_5} \otimes \underline{D}_F$ continuous discrete

Marck Kac (1966): Can one hear the shape of a drum?

 $D = \mathcal{D} \otimes 1_n + \underline{\gamma_5} \otimes \underline{D_F}$ continuous discrete

Marck Kac (1966): Can one hear the shape of a drum?

 \downarrow Spectral action

 $s + \mathsf{Tr}(F_{\mu\nu}F^{\mu\nu}) + \mathsf{Tr}(\Phi^2) + \mathsf{Tr}(\Phi^4) + \mathsf{Tr}[(D_{\mu}\Phi)(D^{\mu}\Phi)]$

 $D = \mathcal{D} \otimes 1_n + \underline{\gamma_5} \otimes \underline{D_F}$ continuous discrete

Marck Kac (1966): Can one hear the shape of a drum?

 \downarrow Spectral action

 $\overline{s + \mathsf{Tr}(F_{\mu\nu}F^{\mu\nu}) + \mathsf{Tr}(\Phi^2) + \mathsf{Tr}(\Phi^4) + \mathsf{Tr}[(D_{\mu}\Phi)(D^{\mu}\Phi)]}$

Unification: $5g_1^2 = 3g_2^2 = 3g_3^2 = f(Y)\lambda$

 $D = \mathcal{D} \otimes 1_n + \underline{\gamma_5} \otimes \underline{D_F}$ continuous discrete

Marck Kac (1966): Can one hear the shape of a drum?

 \downarrow Spectral action

 $\overline{s + \mathsf{Tr}(F_{\mu\nu}F^{\mu\nu}) + \mathsf{Tr}(\Phi^2) + \mathsf{Tr}(\Phi^4) + \mathsf{Tr}[(D_{\mu}\Phi)(D^{\mu}\Phi)]}$

Unification: $5g_1^2 = 3g_2^2 = 3g_3^2 = f(Y)\lambda$

Higgs mass : $\sim 170 \text{GeV}$

The classification of $M_A(\mathbb{C}) \oplus M_B(\mathbb{C}) \oplus M_C(\mathbb{C}) \oplus \cdots$ is possible thanks to Krajewski diagrams

The classification of $M_A(\mathbb{C}) \oplus M_B(\mathbb{C}) \oplus M_C(\mathbb{C}) \oplus \cdots$ is possible thanks to Krajewski diagrams

 $M_A(\mathbb{C}) \oplus M_B(\mathbb{C})$

The classification of $M_A(\mathbb{C}) \oplus M_B(\mathbb{C}) \oplus M_C(\mathbb{C}) \oplus \cdots$ is possible thanks to Krajewski diagrams

 $M_A(\mathbb{C}) \oplus M_B(\mathbb{C})$

The classification of $M_A(\mathbb{C}) \oplus M_B(\mathbb{C}) \oplus M_C(\mathbb{C}) \oplus \cdots$ is possible thanks to Krajewski diagrams

 $M_A(\mathbb{C}) \oplus M_B(\mathbb{C})$

0 0 0 0

The classification of $M_A(\mathbb{C}) \oplus M_B(\mathbb{C}) \oplus M_C(\mathbb{C}) \oplus \cdots$ is possible thanks to Krajewski diagrams

 $M_A(\mathbb{C}) \oplus M_B(\mathbb{C})$

The classification of $M_A(\mathbb{C}) \oplus M_B(\mathbb{C}) \oplus M_C(\mathbb{C}) \oplus \cdots$ is possible thanks to Krajewski diagrams

 $M_A(\mathbb{C}) \oplus M_B(\mathbb{C})$

2. Classification of almost-commutative spaces

Krajewski diagram for the SM

2. Classification of almost-commutative spaces

Krajewski diagram for the SM

2. Classification of almost-commutative spaces

Krajewski diagram for the SM

2. Classification of almost-commutative spaces

 $m_{(1 \times 2)}$

Dirac operator

M

 $n_{(1 \times 2)} \otimes 1_3 \mid n_{(1 \times 2)} \otimes 1_3$

Krajewski diagram for the SM

2. Classification of almost-commutative spaces

Krajewski diagram for the SM

Dirac operator $\underbrace{\begin{array}{c|c} m_{(1\times2)} & | \\ \hline n_{(1\times2)} \otimes 1_3 & n'_{(1\times2)} \otimes 1_3 \\ \hline \mathcal{M} \\ \hline \mathcal{M} \\ D = \underbrace{\begin{array}{c|c} \mathcal{M}^* \\ \hline \mathcal{M}^* \\ \hline \overline{\mathcal{M}^*} \\ \hline \overline{\mathcal{M}^*} \\ \hline \end{array}} \\
\end{array}$

2. Classification of almost-commutative spaces

Higgs

New arrow \rightarrow Dirac mass for ν

3. Beyond the standard model

New arrow \rightarrow Dirac mass for ν

Majorana
$$\rightarrow D = \left(\begin{array}{c|c} & T \\ \hline T & \end{array} \right)$$

3. Beyond the standard model

New arrow \rightarrow Dirac mass for ν Majorana $\rightarrow D = \left(\begin{array}{c|c} & T \\ \hline T & \\ \end{array} \right)$ \rightarrow see-saw mechanism

... the axiom of orientability must be forgotten

Antiparticles: $2 \oplus 2$ left rigth

Antiparticles: $2 \oplus 2$ left rigth

 $\left(egin{array}{c} \psi^0 \ \psi^- \end{array}
ight)$ $ight)
ightarrow \Delta m_{\psi} = 350 \text{MeV}$

Antiparticles: $2 \oplus 2$ $_{rigth} \oplus 2$ $_{left}$

 $\left(\begin{array}{c} \psi^0 \\ \psi^- \end{array}\right) \rightarrow \Delta m_\psi = 350 \text{MeV}$

Life time of ψ^- : $\sim 10^{-9}s$

Antiparticles: $\underbrace{2}_{rigth} \oplus \underbrace{2}_{left}$

 $\rightarrow \Delta m_{\psi} = 350 \mathrm{MeV}$

Life time of ψ^- : $\sim 10^{-9}s$ dark matter $\rightarrow 10$ & 550 TeV Higgs mass ~ 178 GeV

3. Beyond the standard model

Two arrows ↓ Two new kinds of charged fermions

Two arrows ↓ Two new kinds of charged fermions ↓ Two gauge invariant Dirac mass terms

SM+SU(N)

 ψ_2

SM+SU(N)

 ψ_1 ψ_2

Gauge-invariant mass

3. Beyond the standard model

 $\mathsf{SM}{+}SU(N)$

$$\left(egin{array}{c} \psi_1 \ \psi_2 \end{array}
ight)_L \oplus (\psi_1)_R \oplus (\psi_2)_R$$

Gauge-invariant mass $N > 1 \rightarrow m_H > 170 \text{GeV}$ $N = 1 \rightarrow m_H \sim 170 \text{GeV}$ $\boxed{N = 1 \rightarrow U(1)_X}$

 $\mathsf{SM}{+}SU(N)$

Gauge-invariant mass $N > 1 \rightarrow m_H > 170$ GeV $N = 1 \rightarrow m_H \sim 170$ GeV $\boxed{N = 1 \rightarrow U(1)_X}$

Cold dark matter!

Right handed ν + Majorana mass

Right handed ν + Majorana mass New fermions: charged by $U(1)_X$

3. Beyond the standard model

Right handed ν + Majorana mass New fermions: charged by $U(1)_X$ Dashed line: New scalar field

Right handed ν + Majorana mass New fermions: charged by $U(1)_X$ Dashed line: New scalar field

Higgs mass $\sim 125 \text{GeV}$

Right handed ν + Majorana mass New fermions: charged by $U(1)_X$ Dashed line: New scalar field Higgs mass ~ 125 GeV

Breaking: $U(1)_X \to \mathbb{Z}_2$

0 0 0 0

Right handed ν + Majorana mass New fermions: charged by $U(1)_X$ Dashed line: New scalar field Higgs mass ~ 125 GeV Breaking: $U(1)_X \rightarrow \mathbb{Z}_2$

3. Beyond the standard model

0 0 0 0

Right handed ν + Majorana mass

Right handed ν + Majorana mass Dashed line: gauge inv. mass

3. Beyond the standard model

Right handed ν + Majorana mass Dashed line: gauge inv. mass New fermion's mass: ~ 1 GeV & 10^6 GeV

3. Beyond the standard model

0 0 0 0

Right handed ν + Majorana mass Dashed line: gauge inv. mass New fermion's mass: ~ 1 GeV & 10^6 GeV Fermionic dark matter Dark photons

0 0 0 0

Outcomes and outlooks

- Krajewski diagrams provides a pictorical way to search for SM extensions.
- Noncommutative geometry allows dark matter and neutrinos mass models but in a more restrictive way than usual efective field theories.
- Until now, all the neutrino masses obtained are at tree-level.
- Are possible neutrino masses at loop level from noncommutative geometry?
- Can one obtain two scalar doublets (at least) that allow us to introduce loop realizations.
- What about non-associative algebras?

0 0

References

- B. lochum, T. Schucker and C. Stephan, J. Math. Phys. 45, 5003 (2004) doi:10.1063/1.1811372 [hep-th/0312276].
- C. A. Stephan, J. Phys. A 39, 9657 (2006) doi:10.1088/0305-4470/39/30/016 [hep-th/0509213].
- R. Squellari and C. A. Stephan, J. Phys. A 40, 10685 (2007) doi:10.1088/1751-8113/40/34/020 [arXiv:0706.3112 [hep-th]].
- C. A. Stephan, J. Phys. A 40, 9941 (2007) doi:10.1088/1751-8113/40/32/017 [arXiv:0706.0595 [hep-th]].
- C. A. Stephan, Phys. Rev. D 80, 065007 (2009)
 doi:10.1103/PhysRevD.80.065007 [arXiv:0904.1188 [hep-th]].
 HEP :: Buscar :: Ayuda :: Terms of use :: Privacy policy
- C. A. Stephan, Phys. Rev. D 79, 065013 (2009) doi:10.1103/PhysRevD.79.065013 [arXiv:0901.4676 [hep-th]].