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Dirac operator

D = /D ⊗ 1n︸ ︷︷ ︸
continuous

+ γ5 ⊗DF︸ ︷︷ ︸
discrete

Marck Kac (1966): Can one hear the shape of a drum?
↓

Spectral action
≀

s+ Tr(FµνF µν) + Tr(Φ2) + Tr(Φ4) + Tr[(DµΦ)(D
µΦ)]

Unification: 5g21 = 3g22 = 3g23 = f(Y )λ

Higgs mass :∼ 170GeV
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Classification of almost-commutative spaces

The classification ofMA(C)⊕MB(C)⊕MC(C)⊕ · · · is possible
thanks to Krajewski diagrams

MA(C)⊕MB(C)
↓
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The matrix C ⊕ M2(C) ⊕ M3(C) and the SM

Krajewski diagram for the SM

Representation 1⊗ 1 (
1⊗ 3

1⊗ 3

) 
︸ ︷︷ ︸

Right(
2⊗ 1

2⊗ 3

)
︸ ︷︷ ︸

Left

This is exactly the fermionic content of SM
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The matrix C ⊕ M2(C) ⊕ M3(C) and the SM

Krajewski diagram for the SM

Dirac operator

m(1×2)

n(1×2) ⊗ 13 n′(1×2) ⊗ 13︸ ︷︷ ︸
M

D =

M
M∗

M
M∗

[D, a] = (z1, z2)︸ ︷︷ ︸
Higgs

M
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SM + right-handed neutrinos

New arrow→ Dirac mass for ν

Majorana→ D =

(
T

T

)
→ see-saw mechanism

... the axiom of orientability must
be forgotten
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Vector doublets

Antiparticles: 2︸︷︷︸
rigth

⊕ 2︸︷︷︸
left

(
ψ0

ψ−

)
→ ∆mψ = 350MeV

Life time of ψ−: ∼ 10−9s
dark matter→ 10 & 550 TeV
Higgs mass ∼ 178 GeV
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New fermions

Two arrows
↓

Two new kinds of charged
fermions

↓
Two gauge invariant Dirac mass

terms
↓ Hydrogen-like dark matter
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New colours

SM+SU(N)(
ψ1

ψ2

)
L

⊕ (ψ1)R ⊕ (ψ2)R

Gauge-invariant mass

N > 1 → mH > 170GeV

N = 1 → mH ∼ 170GeV

N = 1 → U(1)X

Cold dark matter!
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New scalar fields

Right handed ν + Majorana mass

New fermions: charged by U(1)X

Dashed line: New scalar field

Higgs mass ∼ 125GeV

Breaking: U(1)X → Z2

↓

Dark photons

3. Beyond the standard model 19/22



New scalar fields

Right handed ν + Majorana mass

New fermions: charged by U(1)X

Dashed line: New scalar field

Higgs mass ∼ 125GeV

Breaking: U(1)X → Z2

↓

Dark photons

3. Beyond the standard model 19/22



New scalar fields

Right handed ν + Majorana mass

New fermions: charged by U(1)X

Dashed line: New scalar field

Higgs mass ∼ 125GeV

Breaking: U(1)X → Z2

↓

Dark photons

3. Beyond the standard model 19/22



New scalar fields

Right handed ν + Majorana mass

New fermions: charged by U(1)X

Dashed line: New scalar field

Higgs mass ∼ 125GeV

Breaking: U(1)X → Z2

↓

Dark photons

3. Beyond the standard model 19/22



New scalar fields

Right handed ν + Majorana mass

New fermions: charged by U(1)X

Dashed line: New scalar field

Higgs mass ∼ 125GeV

Breaking: U(1)X → Z2

↓

Dark photons

3. Beyond the standard model 19/22



New scalar fields

Right handed ν + Majorana mass

New fermions: charged by U(1)X

Dashed line: New scalar field

Higgs mass ∼ 125GeV

Breaking: U(1)X → Z2

↓

Dark photons

3. Beyond the standard model 19/22



Inverse see-saw mechanism

Right handed ν + Majorana mass

Dashed line: gauge inv. mass

New fermion’s mass: ∼ 1 GeV &
106 GeV

↓

Fermionic dark matter
+

Dark photons
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Outcomes and outlooks

◦ Krajewski diagrams provides a pictorical way to search for SM
extensions.

◦ Noncommutative geometry allows dark matter and neutrinos
mass models but in a more restrictive way than usual efective
field theories.

◦ Until now, all the neutrino masses obtained are at tree-level.
◦ Are possible neutrino masses at loop level from noncommutative
geometry?

◦ Can one obtain two scalar doublets (at least) that allow us to
introduce loop realizations.

◦ What about non-associative algebras?

4. Outcomes and outlooks 21/22
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