

DARK MATTER SEARCH ON THE MONO-HIGGS (H→bb) IN ATLAS EXPERIMENT

DILIA MARÍA PORTILLO ON BEHALF OF ATLAS COLLABORATION

MOCa 2018 31-07-2018

THE DARK MATTER QUESTION

DARK MATTER PRODUCTION AT LHC: MONO-X INTRODUCTION

The basic diagram of DM production and detection

q

Then...how to trigger a DM event?

The "Mono-X" Topology

Standard Model (SM) particles ('X') recoils against missing transverse momentum

 $\overline{E_{\mathrm{T}}^{\mathrm{miss}}}$

$$pp \to \not\!\!\!E_T + X$$

In the final state we look for...

• Well defined SM particle 'X'

MONO-X SIGNATURES

 Searching for excess in energy imbalance on the transverse plane - missing transverse energy/momentum = "MET"

MONO-X GENERAL SIGNATURES

 Searching for excess in energy imbalance on the transverse plane - missing transverse energy/momentum = "MET"

DARK MATTER MODELS

MONO-H MOTIVATION

- Higgs boson discovery in run1 provides unique method for probing dark matter at LHC
- No Initial State Radiation Higgs
- More closely connected to
 DM production
 Provides direct probe of DMSM coupling
- Signature extended beyond a high MET tail
- The visible part of the event has a characteristic energy/ mass scale.

MONO-H MOTIVATION

- Higgs boson discovery in run1 provides unique method for probing dark matter at LHC
- No Initial State Radiation Higgs
- More closely connected to
 DM production
 Provides direct probe of DMSM coupling
- Signature extended beyond a high MET tail
- The visible part of the event has a characteristic energy/ mass scale.

OVERVIEW OF THE MONO-H STRATEGY

Search for DM produced in association with Higgs→bb. Final state: **MET + H(bb)**

Event selection overview:

Trigger on high MET
 No leptons (e/μ/τ veto)
 Identify H→bb decay

OVERVIEW OF THE MONO-H STRATEGY

Search for DM produced in association with Higgs \rightarrow bb. Final state: **MET + H(bb)**

R=0.4

Event selection overview:

Trigger on high MET No leptons ($e/\mu/\tau$ veto) Identify H→bb decay

Resolved Regime

Higgs is reconstructed with a pair of small radius jets (j)

h

Merged Regime

For boosted events, the Higgs is reconstructed with a large radius jet (J) with substructure

h

R=1

MONO-H: BACKGROUNDS AND REGIONS

Search for DM produced in association with Higgs→bb. Final state: **MET + H(bb)**

Event selection overview:

- Trigger on high MET
- No leptons (e/μ/τ veto)
- o Identify H→bb decay

Dominant Backgrounds

MONO-H: BACKGROUNDS AND REGIONS

Search for DM produced in association with Higgs→bb. Final state: **MET + H(bb)**

Event selection overview:

Trigger on high MET

- No leptons (e/μ/τ veto)
- o Identify H→bb decay

MONO-H: BACKGROUNDS AND REGIONS

Search for DM produced in association with Higgs→bb. Final state: **MET + H(bb)**

MONO-H: INTERPRETATION

Search for DM produced in association with Higgs→bb. Final state: MET + H(bb)

HOW TO IMPROVE MONO-H ANALYSIS?

Commissioning and exercising NEW Combined Performance improvements

HOW TO IMPROVE MONO-H ANALYSIS?

Commissioning and exercising NEW Combined Performance improvements

MISSING TRANSVERSE ENERGY RECONSTRUCTION

Missing Transverse Energy (MET)

$$\sum_{i} \vec{p_i} = 0 \implies \sum_{\substack{\text{observable} \\ \text{is missing}}} \vec{p_i} + \vec{E}_T^{\text{miss}} = 0 \qquad \vec{E}_T^{\text{miss}} = -\sum_{\substack{\text{observable} \\ \text{observable}}} \vec{p_i}$$

Two effects could imply an imbalance in the total transverse momentum (MET \neq 0)

- Non-interacting particles (True MET): SM particles (neutrinos), new physics (Dark Matter, SUSY, etc.)
- Fake detection (Fake MET): Objects misreconstruction, detector effects (dead regions).

OBJECT-BASED MISSING TRANSVERSE MOMENTUM SIGNIFICANCE

 Events in which the reconstructed Missing Transverse Momentum, MET, is either consistent with contributions solely from particle-measurement resolutions and efficiencies or consistent with genuine MET can be distinguished by evaluating the Met Significance S.

Object-based MET Significance Definition

ATLAS-CONF-2018-039

Based on the expected resolutions for all objects that enter the MET reconstruction

Covariance Matrix for each object

Event by event calculated

$$S^{2} = 2 \ln \left(\frac{\mathcal{L}(\boldsymbol{E}_{\mathrm{T}}^{\mathrm{miss}} | \boldsymbol{E}_{\mathrm{T}}^{\mathrm{miss}})}{\mathcal{L}(\boldsymbol{E}_{\mathrm{T}}^{\mathrm{miss}} | \mathbf{0})} \right) = (\boldsymbol{E}_{\mathrm{T}}^{\mathrm{miss}})^{\mathrm{T}} \left(\sum_{i} \mathbf{V}_{i} \right)^{-1} (\boldsymbol{E}_{\mathrm{T}}^{\mathrm{miss}})$$

This novel definition depends on the multiplicities, types, and kinematics of the objects measured in each event

New requirement in resolved selection to suppress multijet background

- The multijet background is originated from pure strong interactions
- Met significance can help to identify and separate multijet background with respect to EW backgrounds and DM signals

More than 95% of dijet can be rejected while retaining a signal efficiency ~90%

VARIABLE RADIUS JETS

Merging of Fixed Radius (FR) track jets causes loss of acceptance × efficiency for signals with highly boosted topologies.

The reconstruction of sub-jets used for b-tagging in the merged regime improves using the VR track jets, resulting in a higher b-tagging efficiency.

VR track-jets

- Used for the first time in analysis!
- anti-kt, R = 0.02-0.4, *ρ*= 30 GeV

$$\mathbf{R} \rightarrow \mathbf{R}_{\mathrm{eff}}(p_{\mathrm{T}}) \approx \frac{\rho}{p_{\mathrm{T}}}$$

VARIABLE RADIUS JETS IN MONO-H

Improve the gain in selection efficiency for large $m_{Z'}$

 \overline{q}

q

ATLAS-CONF-2018-039

DISTRIBUTIONS AFTER FIT

The improvement from using VR track jets

3× improvement driven by VR tracks-jets in boosted region!

CONCLUSIONS

- Broad ATLAS search program to constrain WIMP production at the LHC
- ◇ Search for Dark Matter with Higgs boson (→ bb) using 79.8 fb of pp collisions at $\sqrt{s}=13$ TeV
- No significant deviation from Standard Model prediction observed.
- $\diamond~$ Exclusion contour for Z'+2HDM benchmark model extended up to mZ' \leq 2.85 TeV for mA=300 GeV
- First time use of VR track jets in ATLAS: helps to maintain double b-tagging efficiency also in highly boosted topologies
- Object based MET significance was validated and commissioned in this analysis. First physics usage.
- More data to analyse...stay tuned for results with full Run-2 dataset!

MONO-X GENERAL STRATEGY

Similar generic strategy followed by Mono-X searches

 Searching for excess in energy imbalance on the transverse plane - missing transverse energy/momentum = "MET"

DARK MATTER MODELS

MISSING TRANSVERSE ENERGY PERFORMANCE

100

200 300 400 500 600 700 800 900 1000

 $\Sigma E_{T}(event)$ [GeV]

30

100 200 300 400 500 600 700 800 900 1000

 $\Sigma E_{T}(event)$ [GeV]

MISSING TRANSVERSE MOMENTUM SIGNIFICANCE

 Events in which the reconstructed Missing Transverse Momentum, MET, is either consistent with contributions solely from particle-measurement resolutions and efficiencies or consistent with genuine MET can be distinguished by evaluating the Met Significance S.

Event-based MET Significance in ATLAS

- Approximation for the MET resolution
- Event based quantity
- Do not take into account directional correlations

Object-based MET Significance Definition

- Based on the expected resolutions for all objects that enter the MET reconstruction
- Event by event calculated

$$S^{2} = 2 \ln \left(\frac{\mathcal{L}(\boldsymbol{E}_{\mathrm{T}}^{\mathrm{miss}} | \boldsymbol{E}_{\mathrm{T}}^{\mathrm{miss}})}{\mathcal{L}(\boldsymbol{E}_{\mathrm{T}}^{\mathrm{miss}} | \mathbf{0})} \right) = (\boldsymbol{E}_{\mathrm{T}}^{\mathrm{miss}})^{\mathrm{T}} \left(\sum_{i} \mathbf{V}_{i} \right)^{-1} (\boldsymbol{E}_{\mathrm{T}}^{\mathrm{miss}})$$

Covariance Matrix for each object

This novel definition depends on the multiplicities, types, and kinematics of the objects measured in each event

Considers the expected resolutions of "hard" objects

$$S^{2} = \frac{\left|\boldsymbol{E}_{\mathrm{T}}^{\mathrm{miss}}\right|^{2}}{\sigma_{L}^{2}\left(1-\rho_{LT}^{2}\right)}$$

Total Variance Longitudinal

$$\sigma_L^2 = \sigma_L^{hard^2} + \sigma_L^{soft^2}$$

Considers a constant soft term resolution

EVENT- VRS. OBJECT-BASED MET SIGNIFICANCE

OBJECT-BASED MET SIGNIFICANCE IN MONO-H ANALYSIS

Multijet background

- The multijet background is originated from pure strong interactions
- It introduces fake MET mainly is due to mis-measured jet momenta
- The multijet background is poorly described by MC, requiring a data-driven estimate.
- Met significance can help to identify and separate multijet \diamond background with respect to EW backgrounds and DM signals

New requirement in resolved selection to suppress multijet background

More than 95% of dijet can be rejected while retaining a signal efficiency ~90%

33

DISTRIBUTIONS AFTER FIT

ATLAS-CONF-2018-039

EXCLUSION LIMIT

ATLAS-CONF-2018-039

Model parameters excluded at 95%CLS: mZ' ≤ 2.8 TeV and mA ≤ 600 GeV

The improvement from using VR track jets

3× improvement driven by VR tracks-jets in boosted region!

MONO-H WITH H TO PHOTONS OR B QUARKS

DARK MATTER SEARCHES AT THE LHC

Search for **DM** pairs

- Missing transverse momentum (MET) recoiling against a "visible" X=jet, y, W, Z, h from ISR
- SUSY searches involving MET

Assume the same particle DM model and search for **mediator decays jpto SM** ^q resonant searches, such as <u>di-jet</u>, di-lepton, ttbar final states

Classic di-jet search

Rely on single jet triggers

Sensitive to resonance masses in the between 1TeV-2.6 TeV

Trigger on ISR object to reach lower resonance masses

Sensitive to masses 200GeV-1TeV

Di-jet at Trigger Level ATLAS-CONF-2016-030

Overcome single jet trigger prescale limitations by reducing amount of stored information

Sensitive to masses 450GeV-1TeV

	E	· · · · · · · · · · · · · · · · · · ·	
~	F		
ш.	-	AILAJ	

MONO-X VRS. DI-X

 $g_{DM} = 1.0, \ g_{SM} = 0.25$

Different coupling choices determine different interplay between Mono-X and Di-X

MONO-X VRS. DI-X

ATLAS VS DIRECT DETECTION

ATLAS results translated to direct detection plane (arXiv:1603.04156)

Nice complementarity between ATLAS and direct detection experiments

ATLAS VS DIRECT DETECTION

ATLAS results translated to direct detection plane (arXiv:1603.04156)

Nice complementarity between ATLAS and direct detection experiments

Axial-Vector mediator / Spin dependent

Vector mediator / Spin independent

VR TRACK JETS

- Canonical b-tagging: assumption of a single isolated B-hadron
- Mitigate loss of efficiency by redefining how single *b*-tags are obtained
- ► VR track jets: dynamic cone, $d_{ij} = min(p_{T_i}^{-2}, p_{T_j}^{-2})\Delta R_{ij}^2/R_{eff}(p_{T_i})^2$, arxiv 0903.0392

VARIABLE RADIUS JETS

Merging of Fixed Radius (FR) track jets causes loss of acceptance × efficiency for signals with highly boosted topologies.

1.2_Γ Double Subjet B-Labelling Efficiency ATLAS Simulation 76 GeV < m_{iet} < 146 GeV The reconstruction of sub-jets used for b-Preliminary tagging in the merged regime improves ngguyugar 0.8 using the VR track jets, resulting in a higher VR Jets R=0.2 Track Jet b-tagging efficiency. 0.6 VR Track Jet ExKt Subjet 0.4 CoM Subjet VR track-jets 0.2 FR jets Used for the first time in analysis! $R \rightarrow R_{eff}(p_T) \approx \frac{\rho}{2}$ • anti-kt, R = 0.02-0.4, ρ = 30 GeV 500 1000 1500 2000 2500 3000 Higgs Jet p₋ [GeV] ATL-PHYS-PUB-2017-010 Improve the gain in selection efficiency for large m_{7} , b-tagged large-R jet Acceptance × Efficiency ATLAS Simulation Preliminary Acceptance × Efficiency ATLAS Simulation Preliminary √s = 13 TeV 0.6 Resolved 2 b-tag √s = 13 TeV --Ģ-- FR 0+1+2 b-tag - H 0+1+2 b-tag Z'-2HDM Merged 2 b-tag Z'-2HDM 0.5 m_A = 500 GeV •••••• FR 1 *b*-tag 🕂 VR 1 b-tag 0.8 Resolved + Merged 2 b-tag m₄ = 500 GeV VR track jets --Å-- FR 2 *b*-tag VR 2 b-tag 0.4 Merged SR $\mu/e/\tau$ veto 0.6 0.3 $E_{\tau}^{miss} > 500 \text{ GeV}$ 0.4 0.2 0.1 0.2 1000 1500 2000 2500 3000 1000 1500 2000 2500 3000 m_{z'} [GeV] 45 Good complementarity of two regimes m_{z'} [GeV] Atlas-conf-2018-039

MONO-HIGGS SIGNATURES INTERPRETATIONS

Efective Field Theory framework

\circ Pro

- Generic interpretation
 - Model independent

\circ Con

Not valid at all momentum transfer

Simplified Models

Minimal number of renormalizable operators

The DM and visible sectors are coupled through a new massive mediator

- \circ Pro
 - UV complete
- \circ Con
 - Less generic (specific number of • parameters)
 - Too many exotic models that cannot be reduced to these models.

MONO-HIGGS SIMPLIFIED BENCHMARK MODELS

These Simplified benchmark models were chosen at the LHC Dark Matter forum 47

MONO-HIGGS SIMPLIFIED BENCHMARK MODELS

Scalar Mediator Model for Mono-H

MONO-HIGGS LIMITS ON SIMPLIFIED MODELS

Phys. Lett. B. 765 (2017) 11

MONO-HIGGS EXPECTED LIMITS ON SIMPLIFIED MODELS

MONO-HIGGS EXPECTED LIMITS ON SIMPLIFIED MODELS

Mono-X channels

- X = Vector Boson or Higgs are covered.
 - Highlights are on 13 TeV analysis (all ATLAS at this moment)
- Mono-photon
 - Low background.
- Mono-Z or mono-W
 - Z can be emitted from mediator in t-channel.
 - Hadronic decay mode → larger cross section
 - Leptonic decay mode → cleaner signature.
- Mono-H
 - No ISR (Initial State Radiation) Higgs.
 - H can be emitted from mediator in s-channel.
 - H -> bb decay mode → larger cross section.
 - H -> γγ decay mode → clean signature.
- VVxx (HHxx) contact interaction is unique.
- Other mono-X:
 - Mono-jet: Andreas Korn's talk.
 - Mono-heavy quark(s): Alberto Zucchetta's talk.

Mono-photon	8 TeV	ATLAS: arXiv:1411.1559[hep-ex] CMS: arXiv:1410.8812
	13 TeV	ATLAS: https://atlas.web.cern.ch/Atlas GROUPS/PHYSICS/PAPERS/ EXOT-2015-05/
Mono-Z/W (hadr)	8TeV	ATLAS: arXiv:1309.4017[hep-ex] CMS: CMS PAS EXO-12-055
	13 TeV	ATLAS: ATLAS-CONF-2015-080
Mono-Z(II)	8 TeV	ATLAS: arXiv: 1404.0051[hep-ex] CMS: arXiv: 1511.09375
Mono-W(lv)	8 TeV	ATLAS: arXiv:1407.7495[hep-ex] CMS: arXiv:1408.2745[hep-ex]
Mono-H(bb)	8 TeV	ATLAS: arXiv:1510.0621[hep-ex]
	13 TeV	ATLAS: ATLAS-CONF-2016-019
Mono-H(gamgam)	8 TeV	ATLAS: arXiv:1506.01081[hep-ex]
	13 TeV	ATLAS: ATLAS-CONF-2016-011

Simplified model parameters in Run2

- Based on the Dark Matter Forum recommendation (arXiv:1507.00966 [hep-ex]).
- Dark matter: Dirac particles.
- Mediator: Vector, Axialvector, Scalar or Pseudoscalar particles.
- Mediator width: minimal width = sum of contributions from DM and quarks lighter than a half of the mediator mass.
- S-channel coupling constants:
 - Coupling to DM: g_{DM} = 1.0
 - Coupling to SM: universal to all quarks.
 - Vector and Axialvector: g_{SM} = 0.25 (larger values are constrained by dijet searches, also to keep the mediator width narrow).
 - Scalar and Pseudoscalar: g_{SM} = 1.0
- T-channel couplings: g_{DM} = g_{SM} = 0.1 7

Mono-H(bb) Results

 160.58 ± 11.56

ATLAS 13 TeV, 3.2 fb⁻¹; 4 signal regions: E_{T}^{mi} Merged Resolved (GeV) >500 150 - 200200-350 350-500 171.24 ± 13.13 Z + jets 258.52 ± 26.81 14.63 ± 1.21 3.80 ± 0.44 W + jets94.78 ± 27.79 70.14 ± 21.67 7.51 ± 2.42 2.48 ± 0.71 tī & Single top 1444.38 ± 44.39 656.02 ± 24.51 30.76 ± 1.41 4.83 ± 0.88 21.38 ± 9.96 10.89 ± 5.08 0.58 ± 0.27 Multijet 1.20 ± 0.12 Diboson 17.84 ± 1.62 18.73 ± 0.98 2.53 ± 0.22 SMVh 2.77 ± 1.30 2.78 ± 1.40 0.46 ± 0.23 0.15 ± 0.08 1839.68 ± 33.12 12.47 ± 1.27 Tot. Bkg. 929.80 ± 19.63 56.47 ± 2.08 1830 Data 942 56 20

 244.53 ± 17.76

Resolved, 2 b-tag

 80.15 ± 7.95

Exp. Signal

Merged, 2 b-tag

 149.28 ± 33.67

Stat error 20.5%

NEW

- Systematic error 10.3%
- Main background:
 - Z+jets, W+jets, ttbar
 - Estimated from 1and 2 lepton CR

13 TeV

Backup: Mono-H(bb) Event Selection

- 13 TeV, 3.2 fb⁻¹, MET trigger.
- MET > 150 GeV, and track based MET: p-MET > 30 GeV
- Lepton veto (no isolated electron or muon with pT>7GeV)
- H candidate:
 - Two small-R jets (j₁ and j₂) in resolved region (MET<500GeV)
 - Leading jet p_T > 45 GeV
 - One large-R jet in merged region (MET>500GeV)
 - 1 or 2 b-tagged jet(s).
- Resolved region : cuts to suppress multi-jets background
 - min[Δφ(MET,jets)] > 20 deg: No jets near MET.
 - Δφ(MET,p-MET) < 90 deg: MET and track MET align.
 - Δφ(MET,Higgs) > 120 deg: MET and H go back-to-back.
 - $\Delta \varphi(j_1, j_2) < 140$ deg: Two jets are not back-to-back.

Dominant backgrounds are: $W \rightarrow \ell \nu + jets:$

$t\bar{t}$ +production:

 $Z \rightarrow \nu \nu + \text{jets}$:

- Two lepton region to estimate $Z \rightarrow \ell \ell + jets$: which is kinematically similar to the desired estimate of $Z \rightarrow \nu \nu + jets$
- O Single muon region to estimate W+jets and $t\bar{t}$: number of *b*-tags naturally separates them
- Try to have the control regions close to the signal region
- \rightarrow Apply similar cuts
- Less dominant backgrounds: single-top, diboson, SM VH $b\bar{b}$, multijet

of b-tagged jets 2 0 CR, SR SR 0 Z+jets # of leptons CR. CR, W+jets, W+jets, $t\bar{t}$ tt CR. CR. CR. 2 Z+jets Z+jets Z+jets

OBJECT BASED MET SIGNIFICANCE

The DØ-CMS approach

O How likely is it that this METmeas is TRUE MET, and not simply a result of measurement error or other effects?

This can be evaluated with the log-likelihood ratio of measuring the total observed transverse momentum to the likelihood of the null hypothesis.

$$S(\overrightarrow{E}) \equiv 2ln\left(\frac{\mathcal{L}(\overrightarrow{E} = \sum_{i} \overrightarrow{E_{T_{i}}})}{\mathcal{L}(\overrightarrow{E} = 0)}\right)$$

On a event-by-event basis, S evaluates the p-value that the observed MET is consistent with a null hypothesis, given the full event composition.

If we assume that ...

- \diamond The sum of all the truth transverse momentum is equal to zero $\sum \vec{e_{T_i}} = 0$
- \diamond The difference $\overrightarrow{\epsilon_i} = \overrightarrow{E_{T_i}} \overrightarrow{e_{T_i}}$ has a gaussian probability density function

$$p_i(\overrightarrow{\epsilon_i} \mid \overrightarrow{e_{T_i}}) \equiv P_i(\overrightarrow{\epsilon_i} + \overrightarrow{e_{T_i}} \mid \overrightarrow{e_{T_i}}) = P_i(\overrightarrow{E_{T_i}} \mid \overrightarrow{e_{T_i}}) \sim exp\left[-\frac{1}{2}\left(\overrightarrow{\epsilon_{T_i}}\right)^{\dagger} V_i^{-1}\left(\overrightarrow{\epsilon_{T_i}}\right)\right]$$

... the likelihood for two objects is given by:

$$\mathcal{L}(\overrightarrow{E}) = \int P_1(\overrightarrow{E_{T_1}} \mid \overrightarrow{e_{T_1}}) P_2(\overrightarrow{E_{T_2}} \mid \overrightarrow{e_{T_2}}) \delta\left(\overrightarrow{E} - (\overrightarrow{E_{T_1}} + \overrightarrow{E_{T_2}})\right) d\overrightarrow{E_{T_1}} d\overrightarrow{E_{T_2}} \\ \mathcal{L}(\overrightarrow{E}) \sim exp\left[-\frac{1}{2} \left(\overrightarrow{E}\right)^{\dagger} \left(\sum_i V_i\right)^{-1} \left(\overrightarrow{E}\right) \right]$$

57

DEFINITION OF OBJECT BASED MET SIGNIFICANCE

Covariance Matrix

$$S \sim \left(\sum_{i} \overrightarrow{E_{T_i}}\right)^{\dagger} \left(\sum_{i} V_i\right)^{-1} \left(\sum_{i} \overrightarrow{E_{T_i}}\right)$$

 For each object contributing to the MET, the covariance matrix is rotated into a coordinate system with the x axis parallel to the total Met axis.

$$U_i = \begin{pmatrix} \sigma_{E_{T_i}}^2 & 0\\ 0 & E_{T_i}^2 \sigma_{\Phi_i}^2 \end{pmatrix} \longrightarrow \mathbf{V} = \sum_i V_i = \begin{pmatrix} \sigma_{\parallel}^2 & \sigma_{\parallel\perp}^2\\ \sigma_{\parallel\perp}^2 & \sigma_{\perp}^2 \end{pmatrix}$$

Where σ_{\parallel}^2 is the variance in the direction of the Met, σ_{\perp}^2 is the variance perpendicular to the Met and $\sigma_{\parallel\perp}^2 = \rho \sigma_{\parallel} \sigma_{\perp}$ is the associated covariance.

Met Significance Simplification

• In this coordinate system, parallel and perpendicular to the total measured Met, the Met Significance can be simplified:

$$S \sim \frac{\left(\sum_{i} \overrightarrow{E_{T_i}}\right)^2}{\sigma_{\parallel}^2 \ (1-\rho^2)}$$

Where the correlation coefficient is:

$$ho = rac{\sigma_{\parallel\perp}^2}{\sqrt{\sigma_{\parallel}^2 \, \sigma_{\perp}^2}}$$

NOTE: If
$$ho^2 = 1$$

In this case the definition becomes:
 $S \sim \frac{\left(\sum_i \overrightarrow{E_{T_i}}\right)^2}{\sigma_{\parallel}^2}$
For $ho^2 \ge 0.9$

DEFINITION OF OBJECT BASED MET SIGNIFICANCE

Covariance Matrix

 The significance is defined as the log-likelihood ratio of measuring the total observed transverse momentum to the likelihood of the null hypothesis.

$$S(\vec{E}) \equiv 2ln \left(\frac{\mathcal{L}(\vec{E} = \sum_{i} \vec{E_{T_i}})}{\mathcal{L}(\vec{E} = 0)} \right)$$

Assuming gaussian uncertainties distributions:

$$S \sim \left(\sum_{i} \overrightarrow{E_{T_i}}\right)^{\dagger} \left(\sum_{i} V_i\right)^{-1} \left(\sum_{i} \overrightarrow{E_{T_i}}\right)$$

For each object contributing to the MET, the covariance matrix is calculated as:

$$V^{x,y} = \left[\begin{array}{cc} \sigma_x^2 & \sigma_x \sigma_y \\ \sigma_x \sigma_y & \sigma_y^2 \end{array} \right]$$

Where the measurements in the x and y components are 100% correlated.

This matrix is rotated into a coordinate system with the x axis parallel to the total Met axis. Then, the total covariance matrix is calculated as the sum of all the covariance matrices from each object contributing to the Met:

$$\mathbf{V} = \sum_{i} R(\Phi(\text{Met})) V_i^{x,y} R(\Phi(\text{Met}))^{-1}$$

DEFINITION OF AN OBJECT BASED MET SIGNIFICANCE

Covariance Matrix

$$\mathbf{V} = \left[egin{array}{cc} \sigma_{\parallel}^2 & \sigma_{\parallel\perp}^2 \ \sigma_{\parallel\perp}^2 & \sigma_{\perp}^2 \end{array}
ight.$$

Where σ_{\parallel}^2 is the variance in the direction of the Met, σ_{\perp}^2 is the variance perpendicular to the Met and $\sigma_{\parallel\perp}^2 = \rho \sigma_{\parallel} \sigma_{\perp}$ is the associated covariance.

Met Significance

• In this coordinate system, parallel and perpendicular to the total measured Met, the Met Significance can be simplified:

S

$$\sim \left(\sum_{i} \overrightarrow{E_{T_{i}}}\right)^{\dagger} \mathbf{V}^{-1} \left(\sum_{i} \overrightarrow{E_{T_{i}}}\right)$$
$$S \sim \frac{\left(\sum_{i} \overrightarrow{E_{T_{i}}}\right)^{2}}{\sigma_{\parallel}^{2} (1 - \rho^{2})}$$

• Where the correlation coefficient is:

$$ho = rac{\sigma_{\parallel\perp}^2}{\sqrt{\sigma_{\parallel}^2 \, \sigma_{\perp}^2}}$$

$$\label{eq:rho} \begin{split} \rho^2 &= 1 \\ \text{In this case the definition} \\ \text{becomes:} \\ S &\sim \frac{\left(\sum_i \overrightarrow{E_{T_i}}\right)^2}{\sigma_{\parallel}^2} \\ \text{For } \rho^2 &\geq 0.9 \end{split}$$

NOTE: If