# Minimal Z' models and the LHCb anomalies

Eduardo Rojas

In collaboration with: W. Ponce, R. Benavides, L. Muñoz, O. Rodríguez

Materia Oscura en ColombiA MOCA 2018 Jul 30 2018,

> Universidad de Los andes Bogotá, Colombia





GRUPO DE FENOMENOLOGÍA DE INTERACCIONES FUNDAMENTALES

# Outline

- Non-universal models and flavor physics
- Anomalies in B Meson decays
- General solutions for minimal Models
- Benchmark models
- LHC and low energy Constraints
- Conclusions



# Non-universal models and flavor physics

- The theoretical motivation to study the nonuniversal models comes from top-bottom approaches, especially in string theory derived constructions, where the U(1)' charges are family dependent.
- Non-universal models have been also used to explain the number of families and the hierarchies in the fermion spectrum observed in nature (The flavor problem).
- The fits involving the recent LHCb anomalies prefer non-universal models

## LHCb measurements

• Every one of these measurements deviate from the SM by around  $2.5\sigma$ 's

$$R_K = \frac{BR(B^+ \to K^+ \mu^+ \mu^-)}{BR(B^+ \to K^+ e^+ e^-)} = 0.745^{+0.09}_{-0.074}(\text{stat}) \pm 0.036 \text{ (syst)};$$

$$R_K = 1.0004(8)$$

$$R_{K^*} = \frac{BR(B \to K^* \mu^+ \mu^-)}{BR(B \to K^* e^+ e^-)} = \begin{cases} 0.660^{+0.110}_{-0.070} \pm 0.024, & q^2 \in [0.045, 1.1] \text{GeV}^2 \\ 0.685^{+0.113}_{-0.069} \pm 0.047, & q^2 \in [1.1, 6] \text{GeV}^2 \end{cases},$$

$$R_{K^*} = 0.920(7) \text{ y } R_{K^*} = 0.996(2),$$

### b→s effective Hamiltonian

$$\mathcal{H}_{\text{eff}} = -\frac{4G_F}{\sqrt{2}} V_{tb} V_{ts}^* \frac{e^2}{16\pi^2} \sum_{i} \left( C_i \mathcal{O}_i + C_i' \mathcal{O}_i' \right) + \text{h.c.}$$

 $C_i$ : Wilson coefficients

$$\mathcal{O}_9 = (\bar{s}\gamma_\mu P_L b) \; (\bar{\ell}\gamma^\mu \ell)$$

$$\mathcal{O}_{10} = (\bar{s}\gamma_{\mu}P_Lb) \; \left(\bar{\ell}\gamma^{\mu}\gamma_5\ell\right)$$

 $\mathcal{O}_i$  : Operators

$$\mathcal{O}_9' = (\bar{s}\gamma_\mu P_R b) \; \left(\bar{\ell}\gamma^\mu \ell\right)$$

$$\mathcal{O}'_{10} = (\bar{s}\gamma_{\mu}P_R b) \left(\bar{\ell}\gamma^{\mu}\gamma_5\ell\right)$$

#### Descotes-Genon, L. Hofer, J. Matias and J. Virto 2015

| Coefficient                                                                                                                                                      | Best fit | $1\sigma$      | $3\sigma$                  | $\mathrm{Pull}_{\mathrm{SM}}$ | p-value (%) |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------------|----------------------------|-------------------------------|-------------|
| $\mathcal{C}_7^{	ext{NP}}$                                                                                                                                       | -0.02    | [-0.04, -0.00] | [-0.07, 0.03]              | 1.2                           | 17.0        |
| $\mathcal{C}_9^{	ext{NP}}$                                                                                                                                       | -1.09    | [-1.29, -0.87] | [-1.67, -0.39]             | 4.5                           | 63.0        |
| $\mathcal{C}_{10}^{	ext{NP}}$                                                                                                                                    | 0.56     | [0.32, 0.81]   | $\left[-0.12, 1.36\right]$ | 2.5                           | 25.0        |
| $\mathcal{C}^{	ext{NP}}_{7'}$                                                                                                                                    | 0.02     | [-0.01, 0.04]  | [-0.06, 0.09]              | 0.6                           | 15.0        |
| $\mathcal{C}_{9'}^{	ext{NP}}$                                                                                                                                    | 0.46     | [0.18, 0.74]   | [-0.36, 1.31]              | 1.7                           | 19.0        |
| $\mathcal{C}_{10'}^{	ext{NP}}$                                                                                                                                   | -0.25    | [-0.44, -0.06] | [-0.82, 0.31]              | 1.3                           | 17.0        |
| $\mathcal{C}_9^{	ext{NP}}=\mathcal{C}_{10}^{	ext{NP}}$                                                                                                           | -0.22    | [-0.40, -0.02] | $\left[-0.74, 0.50\right]$ | 1.1                           | 16.0        |
| $\mathcal{C}_9^{	ext{NP}} = -\mathcal{C}_{10}^{	ext{NP}}$                                                                                                        | -0.68    | [-0.85, -0.50] | [-1.22, -0.18]             | 4.2                           | 56.0        |
| $\mathcal{C}_{9'}^{\mathrm{NP}}=\mathcal{C}_{10'}^{\mathrm{NP}}$                                                                                                 | -0.07    | [-0.33, 0.19]  | [-0.86, 0.68]              | 0.3                           | 14.0        |
| $\mathcal{C}_{9'}^{\mathrm{NP}} = -\mathcal{C}_{10'}^{\mathrm{NP}}$                                                                                              | 0.19     | [0.07, 0.31]   | $\left[-0.17, 0.55\right]$ | 1.6                           | 18.0        |
| $\mathcal{C}_9^{\mathrm{NP}} = -\mathcal{C}_{9'}^{\mathrm{NP}}$                                                                                                  | -1.06    | [-1.25, -0.86] | [-1.60, -0.40]             | 4.8                           | 72.0        |
| $\begin{aligned} \mathcal{C}_9^{\text{NP}} &= -\mathcal{C}_{10}^{\text{NP}} \\ &= -\mathcal{C}_{9'}^{\text{NP}} &= -\mathcal{C}_{10'}^{\text{NP}} \end{aligned}$ | -0.69    | [-0.89, -0.51] | [-1.37, -0.16]             | 4.1                           | 53.0        |
| $\mathcal{C}_{9}^{	ext{NP}} = -\mathcal{C}_{10}^{	ext{NP}}$<br>= $\mathcal{C}_{9'}^{	ext{NP}} = -\mathcal{C}_{10'}^{	ext{NP}}$                                   | -0.19    | [-0.30, -0.07] | [-0.55, 0.15]              | 1.7                           | 19.0        |

# Particle content of our model [R.H. Benavides, L. Muñoz, W.A. Ponce, O. Rodríguez, and E. Rojas, work in progress]

| particles | spin | $SU(3)_C$ | $SU(2)_L$ | $U(1)_Y$ | U(1)'        |
|-----------|------|-----------|-----------|----------|--------------|
| $l_{Li}$  | 1/2  | 1         | 2         | -1/2     | $l_i$        |
| $e_{Ri}$  | 1/2  | 1         | 1         | -1       | $e_i$        |
| $ u_{Ri}$ | 1/2  | 1         | 1         | 0        | $ u_i$       |
| $q_{Li}$  | 1/2  | 3         | 2         | +1/6     | $q_i$        |
| $u_{Ri}$  | 1/2  | 3         | 1         | +2/3     | $u_i$        |
| $d_{Ri}$  | 1/2  | 3         | 1         | -1/3     | $d_i$        |
| $\phi_i$  | 0    | 1         | 2         | 1/2      | $Y_{\phi_i}$ |

### Anomalies

$$[SU(2)]^{2}U(1)': 0 = \Sigma q + \frac{1}{3}\Sigma l,$$

$$[SU(3)]^{2}U(1)': 0 = 2\Sigma q - \Sigma u - \Sigma d,$$

$$[grav]^{2}U(1)': 0 = 6\Sigma q - 3(\Sigma u + \Sigma d) + 2\Sigma l - \Sigma \nu - \Sigma e$$

$$[U(1)]^{2}U(1)': 0 = \frac{1}{3}\Sigma q - \frac{8}{3}\Sigma u - \frac{2}{3}\Sigma d + \Sigma l - 2\Sigma e$$

$$U(1)[U(1)']^{2}: 0 = \Sigma q^{2} - 2\Sigma u^{2} + \Sigma d^{2} - \Sigma l^{2} + \Sigma e^{2},$$

$$[U(1)']^{3}: 0 = 6\Sigma q^{3} - 3(\Sigma u^{3} + \Sigma d^{3}) + 2\Sigma l^{3} - \Sigma \nu^{3} - \Sigma e^{3}$$

$$\Sigma f = f_1 + f_2 + f_3.$$

### Yukawa interactions

$$\mathcal{L}_{Y} \supset \overline{l}_{1_{L}} \tilde{\phi}_{1} \nu_{1_{R}} + \overline{l}_{1_{L}} \phi_{1} e_{1_{R}} + \overline{q}_{1_{L}} \tilde{\phi}_{1} u_{1_{R}} + \overline{q}_{1_{L}} \phi_{1} d_{1_{R}} + \overline{l}_{1_{L}} \tilde{\phi}_{1} u_{1_{R}} +$$

# Scenario A: the anomaly cancel in every family, we can obtain universal models from this solution

| f       | $\epsilon$      |
|---------|-----------------|
| $l_i$   | $-3q_i$         |
| $ e_i $ | $-\nu_i - 6q_i$ |
| $ u_i $ | $\nu_i + 4q_i$  |
| $d_i$   | $-\nu_i - 2q_i$ |

$$\phi_i = \nu_i + 3q_i.$$



# Scenario B. Anomalies cancel between different families.

$$Y_{\phi_{123}} = q_1 + q_2 + q_3 + \frac{1}{3}(\nu_1 + \nu_2 + \nu_3)$$

# Scenario C: The anomalies cancel between different families (e.g., L<sub>i</sub>-L<sub>j</sub>)

| f       | $\epsilon^{B_I}$                              |
|---------|-----------------------------------------------|
| $l_i$   | $-3q_i$                                       |
| $ e_i $ | $- u_i - 6q_i$                                |
| $ u_i $ | $+ u_i + 4q_i$                                |
| $d_i$   | $-\nu_i - 2q_i$                               |
| $l_j$   | $+\frac{1}{2}[\nu_j - \nu_k - 3(q_j + q_k)]$  |
| $ e_j $ | $-\nu_k - 3(q_j + q_k)$                       |
| $ u_j $ | $+\frac{1}{2}(\nu_j + \nu_k + 5q_j + 3q_k)$   |
| $d_{j}$ | $-\frac{1}{2}(\nu_j + \nu_k + q_j + 3q_k)$    |
| $l_k$   | $+\frac{1}{2}[-\nu_j + \nu_k - 3(q_j + q_k)]$ |
| $e_k$   | $-\nu_j - 3(q_j + q_k)$                       |
| $ u_k $ | $+\frac{1}{2}(\nu_j + \nu_k + 3q_j + 5q_k)$   |
| $d_k$   | $-\frac{1}{2}(\nu_j + \nu_k + 3q_j + q_k)$    |

 $Y_{\phi_1} = \nu_i + 3q_i$  and  $Y_{\phi_2} = Y_{\phi_3} = \frac{1}{2} [\nu_j + \nu_k + 3(q_j + q_k)],$ 



# Benchmark models: Vector and tau-philic models

| Model                  | Definition                                                  | Constraints                                           | NFP |
|------------------------|-------------------------------------------------------------|-------------------------------------------------------|-----|
| $Z_V^{\mathbf{A}}$     |                                                             | $n_i = -3q_i, i = 1, 2, 3$                            | 3   |
| $Z_V^{\mathbf{B}}$     | $\epsilon(f)_L = \epsilon_R(f)$                             | $n_k = -n_i - n_j - 3\Sigma q$                        | 5   |
| $Z_V^{f C}$            |                                                             | $n_i = -3q_i, n_k = -n_j - 3q_j - 3q_k$               | 4   |
| $Z_{	au}^{\mathbf{A}}$ |                                                             | $q_1 = n_1 = q_2 = n_2 = 0$                           | 2   |
| $Z_{	au}^{\mathbf{B}}$ | $\epsilon_{L,R}(e_i) = \epsilon_{L,R}(\nu_i) = 0, i = 1, 2$ | $n_1 = n_2 = 0, q_2 = -q_1 - \frac{1}{3}(n_3 + 3q_3)$ | 3   |
| $Z_{	au}^{\mathbf{C}}$ |                                                             | $q_1 = n_1 = n_2 = 0, q_2 = -\frac{1}{3}(n_3 + 3q_3)$ | 2   |

# Benchmark models: Lepto-phobic, proton-phobic, neutron-phobic and top-philic models

|   |                                    |                                                           |                                                  | 4 7 7 7 7 |
|---|------------------------------------|-----------------------------------------------------------|--------------------------------------------------|-----------|
| • | $Z_{\not \downarrow}^{\mathbf{B}}$ | $\epsilon_{L,R}(e_i) = \epsilon_{L,R}(\nu_i) = 0$         | $n_i = 0, n_j = 0, n_k = 0, q_k = -q_i - q_j$    | 2         |
|   | $Z_{\not \perp}^{\mathbf{C}}$      |                                                           | $n_i = 0, n_j = 0, n_k = 0, q_i = 0, q_k = -q_j$ | 1         |
|   | $Z_{p}^{\mathbf{A},\mathbf{C}}$    | $2g_V(u) + g_V(d) = 0$                                    | $n_1 = -9q_1$                                    | 5         |
|   | $Z_{p\!\!/}^{f B}$                 |                                                           | $n_3 = -n_1 - n_2 - 3\Sigma q - 18q_1$           | 5         |
|   | $Z_{p}^{\mathbf{A},\mathbf{C}}$    | $g_V(u) + 2g_V(d) = 0$                                    | $n_1 = 3q_1$                                     | 5         |
|   | $Z_{p}^{\mathbf{B}}$               |                                                           | $n_3 = -n_1 - n_2 - 3\Sigma q + 18q_1$           | 5         |
|   | $Z_t^{\mathbf{B}}$                 | $\epsilon_{L,R}(u_i) = \epsilon_{L,R}(d_i) = 0, i = 1, 2$ | $q_1 = 0, q_2 = 0, n_3 = -n_1 - n_2 - 3q_3$      | 3         |
|   | $Z_t^{\mathbf{C}}$                 |                                                           | $q_1 = 0, n_1 = 0, q_2 = 0, n_3 = -n_2 - 3q_3$   | 2         |

# Benchmark models: Barion-phobic and models without FCNC in the quark sector

| $Z_{\not\not\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$ | $\epsilon_{L,R}(u_i) = \epsilon_{L,R}(d_i) = 0, i = 1, 2, 3$ | $q_i = q_j = q_k = 0, n_k = -n_i - n_j$     | 2 |
|-------------------------------------------------------------------------------------|--------------------------------------------------------------|---------------------------------------------|---|
| $Z_{\not p}^{\mathbf{C}}$                                                           |                                                              | $q_i = q_j = q_k = 0, n_i = 0, n_k = -n_j$  | 1 |
| $Z_{\text{ECNC}q}^{\mathbf{A}}$                                                     |                                                              | $q_1 = q_2, n_1 = n_2$                      | 3 |
| $Z_{\text{ECNC}q}^{\mathbf{B}}$                                                     | $\epsilon_{L,R}(u_1(d_1)) = \epsilon_{L,R}(u_2(d_2))$        | $q_1 = q_2$                                 | 5 |
| $Z_{\text{ECNC}q}^{\mathbf{C}}$                                                     |                                                              | $q_1 = q_2, n_3 = 2n_1 - n_2 + 3q_1 - 3q_3$ | 4 |

### Charges for some benchmark models

| f       | Scenario C                                    |                    | Vector N                       | lodels                                              |                                                    |
|---------|-----------------------------------------------|--------------------|--------------------------------|-----------------------------------------------------|----------------------------------------------------|
| f       | $a\epsilon^S + b\epsilon^A$                   | $Z_V^{\mathbf{A}}$ | $Z_V^{\mathbf{B}}$             | $Z_V^{f C}$                                         | $Z_{ m CKM}^{f B}$                                 |
|         |                                               |                    | ,                              | •                                                   |                                                    |
| $ u_i $ | $a\hat{ u}_i$                                 | $ u_i$             | $ u_i$                         | $ u_i$                                              | $ u_i $                                            |
| $l_i$   | $-3a\hat{q}_i$                                | $ u_i$             | $ u_i$                         | $ u_i$                                              | $\nu_i - 3q_i - \frac{1}{3}\Sigma\nu$              |
| $e_i$   | $-a(\hat{\nu}_i + 6\hat{q}_i)$                | $ u_i$             | $ u_i$                         | $ u_i$                                              | $\nu_i - 6q_i - \frac{2}{3}\Sigma\nu$              |
| $q_i$   | $a\hat{q}_i$                                  | $-\frac{\nu_i}{3}$ | $q_i$                          | $-\frac{\nu_i}{3}$                                  | $q_i$                                              |
| $u_i$   | $+a(\hat{ u}_i+4\hat{q}_i)$                   | $-\frac{\nu_i}{3}$ | $q_i$                          | $-\frac{\nu_i}{3}$                                  | $4q_i + \frac{1}{3}\Sigma\nu$                      |
| $d_i$   | $-a(\hat{ u}_i+2\hat{q}_i)$                   | $-\frac{\nu_i}{3}$ | $q_i$                          | $-\frac{\nu_i}{3}$                                  | $2q_i - \frac{1}{3}\Sigma\nu$                      |
| $ u_j$  | $a\hat{\nu}_j + b\hat{\nu}_j$                 | $\nu_j$            | $ u_j$                         | $ u_j$                                              | $ u_j $                                            |
| $l_j$   | $-3a\hat{q}_j + b\hat{ u}_j$                  | $ u_j$             | $ u_j$                         | $ u_j$                                              | $\nu_j - 3q_i - \frac{1}{3}\Sigma\nu$              |
| $ e_j $ | $-a(\hat{\nu}_j + 6\hat{q}_j) + b\hat{\nu}_j$ | $ u_j$             | $ u_j$                         | $ u_j$                                              | $\nu_j - 6q_i - \frac{2}{3}\Sigma\nu$              |
| $q_{j}$ | $a\hat{q}_j + b\hat{q}_j$                     | $-\frac{\nu_j}{3}$ | $q_j$                          | $q_{j}$                                             | $q_i$                                              |
| $ u_j $ | $+a(\hat{\nu}_j+4\hat{q}_j)+b\hat{q}_j$       | $-\frac{\nu_j}{3}$ | $q_{j}$                        | $q_{j}$                                             | $4q_i + \frac{1}{3}\Sigma\nu$                      |
| $d_{j}$ | $-a(\hat{\nu}_j + 2\hat{q}_j) + b\hat{q}_j$   | $-\frac{\nu_j}{3}$ | $q_{j}$                        | $q_{j}$                                             | $2q_i - \frac{1}{3}\Sigma\nu$                      |
| $\nu_k$ | $a\hat{ u}_j - b\hat{ u}_j$                   | $\nu_k$            | $\nu_i - \Sigma n - 3\Sigma q$ | $ u_k$                                              | $ u_k$                                             |
| $l_k$   | $-3a\hat{q}_j - b\hat{\nu}_j$                 | $\nu_k$            | $\nu_i - \Sigma n - 3\Sigma q$ | $ u_k$                                              | $\left \nu_k - 3q_i - \frac{1}{3}\Sigma\nu\right $ |
| $e_k$   | $-a(\hat{\nu}_j + 6\hat{q}_j) - b\hat{\nu}_j$ | $\nu_k$            | $\nu_i - \Sigma n - 3\Sigma q$ | $ u_k$                                              | $\left \nu_k - 6q_i - \frac{2}{3}\Sigma\nu\right $ |
| $q_k$   | $a\hat{q}_j - b\hat{q}_j$                     | $-\frac{\nu_k}{3}$ | $q_k$                          | $\left  -\frac{1}{3}(\nu_j + \nu_k + 3q_j) \right $ | $q_i$                                              |
| $ u_k $ | $+a(\hat{\nu}_j+4\hat{q}_j)-b\hat{q}_j$       | $-\frac{\nu_k}{3}$ | $q_k$                          | $\left  -\frac{1}{3}(\nu_j + \nu_k + 3q_j) \right $ | $4q_i + \frac{1}{3}\Sigma\nu$                      |
| $d_k$   | $-a(\hat{\nu}_j + 2\hat{q}_j) - b\hat{q}_j$   | $-\frac{\nu_k}{3}$ | $q_k$                          | $\left  -\frac{1}{3}(\nu_j + \nu_k + 3q_j) \right $ | $2q_i - \frac{1}{3}\Sigma\nu$                      |

## Low-energy observables

| O                                             | Value [46, 47]          | SM prediction $\mathcal{O}_{\mathrm{SM}}$ [46] | $\Delta \mathcal{O} = \mathcal{O} - \mathcal{O}_{\mathrm{SM}}$                                                       |
|-----------------------------------------------|-------------------------|------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|
| $Q_W(\mathrm{Cs})$                            | $-72.62 \pm 0.43$       | $-73.25 \pm 0.02$                              | $Z\Delta Q_W(p) + N\Delta Q_W(n)$                                                                                    |
| $Q_W(e)$                                      | $-0.0403 \pm 0.0053$    | $-0.0473 \pm 0.0003$                           | $-4\left(\frac{g'M_Z}{g^{(1)}M_{Z'}}\right)^2g'_A(e)g'_V(e)$                                                         |
| $1 - \sum_{q=d,s,b}  V_{uq} ^2$               | 1 - 0.9999(6)           | 0                                              | $\Delta_0 \epsilon_L(\mu) \left( \epsilon_L(\mu) - \epsilon_L(d) \right)$                                            |
| $C_9^{ m NP}$                                 | $-1.29^{+0.21}_{-0.20}$ | 0                                              | $-\frac{1}{g_{SM}^2 M_{Z'}^2} \frac{\Delta_L^{sb}(Z') \Delta_V^{\mu\bar{\mu}}(Z')}{V_{ts}^* V_{tb} \sin^2 \theta_W}$ |
| $C_{10}^{ m NP}$                              | $+0.79^{+0.26}_{-0.24}$ | 0                                              | $-\frac{1}{g_{SM}^2 M_{Z'}^2} \frac{\Delta_L^{sb}(Z') \Delta_A^{\mu\bar{\mu}}(Z')}{V_{ts}^* V_{tb} \sin^2 \theta_W}$ |
| $\frac{\sigma^{\mathrm{SM}+Z'}}{\sigma_{SM}}$ | $0.83 \pm 0.18$         | 1                                              | $\frac{1 + \left(1 + 4s_W^2 + 2\Delta_L^2(\mu_L)v^2/M_{Z'}^2\right)^2}{1 + (1 + 4s_W^2)^2} - 1$                      |

### ATLAS and low energy constraints



By adding two Higgs doublets it is possible to have a minimal non-universal Z' model with a scotogenic mechanism to generate neutrino masses and dark matter. The U(1) have a double roll, to generate a residual Z\_2 discrete symmetry and serve as leverage to accommodate the LHCb anomalies.

[D.Blandon, D. Restrepo and E.R work in progress]



### Conclusions

- We present the most general solutions for the charges of a \$Z'\$ with a minimal content of fermions. From our analysis,
- we show the existence of three different scenarios which, as far as we know, are new in the literature.
- These solutions reduce to very well-known cases for particular choices of the free parameters.
- We also define several benchmark models in order to show the flexibility of our parameterizations.
- In order to make a connection with the phenomenology, we show that it is possible to adjust some
- of these benchmark models to several observables, including \$C\_9\$ and \$C\_{10}\$ which are involved in the LHCb anomalies.
- We use the upper limits on the \$Z'\$ cross-sections
- of extra gauge vector bosons \$Z'\$ decaying into dileptons from the ATLAS data at 13 TeV with an accumulated luminosity of 36.1~fb\$^{-1}\$
- to set the 95\% CL allowed regions in the parameter space for a \$Z'\$ mass of \$5\$~TeV.

  By using ATLAS data from the Drell-Yan process pp -> Z, \gamma->I^+I^- we set 95% CL lower limits for the Z' mass for some benchmark models.