Neutrino Background in Dark Matter Direct Detection Experiments: Standard Model and beyond

Yuber F. Perez-Gonzalez Instituto de Física Teórica, Universidade Estadual Paulista & ICTP – South American Institute for Fundamental Research & Instituto de Física, Universidade de São Paulo

> MOCa 2018: Materia Oscura en Colombia Bogotá, 30/07/2018

Overview

- DM Direct detection principle
- Coherent neutrino-nucleus scattering (CvNS)
- CvNS as irreducible background
- SM Neutrino Discovery Limit
- Flavour-independent BSM
- Flavour-dependent BSM

Principle of WIMP Direct Detection

Current and Future Limits

Coherent Neutrino-Nucleus Scattering (CvNS)

Recoil rates

Recoil rates

CvNS as an irreducible background

A WIMP signal can perfectly be mimicked by neutrino scatterings.

Neutrino Discovery Limit - 2

How to describe consistently when do neutrinos become relevant?

Profile Likelihood

Neutrino Discovery Limit Due to our lack of knowledge on neutrino fluxes

Uncertainities on the neutrino fluxes.

Neutrino Discovery Limit - 3

How to describe consistently when do neutrinos become relevant?

Profile Likelihood

$$\mathcal{L}(\sigma_{\chi n}, m_{\chi}, \phi_{\nu})$$

Neutrino Discovery Limit Due to our lack of knowledge on neutrino fluxes

Uncertainities on the neutrino fluxes.

Neutrino Discovery Limit - 4

What if there's Beyond the SM physics?

• Flavour independent

Simplified models (scalar and vector) coupling with both DM and neutrinos

R Harnik et. al. - JACP (2012) 1207-026

E. Bertuzzo, F. Deppisch, S. Kulkarni, YFPG and R. Zukanovich Funchal

JHEP 1704 (2017) 073, arXiv:1701.07443 [hep-ph]

• Flavour dependent

Neutral Current Non-Standard Interactions (NC-NSI)
B. Dutta et. al. - Phys. Lett. B773 (2017) 242
D. Aristizabal Sierra - arXiv:1712.09667
M. C. Gonzalez-Garcia, M. Maltoni, YFPG and R. Zukanovich Funchal JHEP 1807 (2018) 019, arXiv:1803.03650 [hep-ph]

Flavour Independent - Vector Mediator

V

Flavour Independent - Scalar Mediator

Current Limits and Future Sensitivity –Vector

Current Limits and Future Sensitivity – Scalar

17

Sensitivity to DM-nucleon scattering -6

Flavour dependent scenario – NC-NSI

CNNS cross section

$$\frac{d\sigma^{\nu}(\nu_{\alpha})}{dE_{R}}\Big|_{\text{NSI}} = \left[\mathcal{Q}_{\text{NSI}}^{\alpha}\right]^{2} \mathcal{F}^{2}(E_{R}) \frac{G_{F}^{2}m_{N}}{4\pi} \left(1 - \frac{m_{N}E_{R}}{2E_{\nu}^{2}}\right)$$
Flavour dependent coefficient

We have to include neutrino oscillations effects

Current Limits - NSI

 $\Delta \chi^2_{OSC+Coherent}$

Recoil rate with NSI

Recoil rate with NSI - 2

Neutrino Discovery Limit including NSI

Neutrino Discovery Limit including NSI - 2

- Future Direct Detection experiments will be sensitive to CNSN, opening another window to study neutrino physics.
- An absence of a WIMP signal put limits in a interaction that affects both DM and vs.
- Improvements on the measurements of neutrino fluxes and/or a detection of the CNSN.
- Flavour independent scenarios can be constrained by current limits, but they can be sensitive to other experimental data
- Flavour dependent BSM interactions are more constrained due to neutrino oscillation physics
- Neutrino physics and DM physics might be interconected.
- Important to study the interplay between these two invisible particles.

¡Gracias!

Backup Slides

Quantum Mechanical Coherence

transfer is small
compared to relative
size of the system
$$R \ll 1$$
 $R = \max_{ij} |\vec{x}_i - \vec{x}_j|$

When do neutrinos become relevant?

• Determine the exposure needed to obtain one neutrino event,

 $\mathcal{E}_{\nu}(E_{\rm th}) = \frac{Ev^{\nu} = 1}{\int_{E_{\rm th}} dE_R \left. \frac{dR}{dE_R} \right|_{\nu}}$

• Compute the background-free exclusion limits at 90% of C.L.

$$\sigma_{0,\text{exc}}|_{90\%} = \frac{-\log[1-0.9]}{\mathcal{E}_{\nu}(E_{\text{th}}) \int_{E_{\text{th}}} dE_R \left. \frac{dR}{dE_R} \right|_{\chi,\sigma_0^n = 1}}$$

• Take the lowest cross section in each WIMP mass.

Reactor contributions

Neutrino Discovery Limit - 3

How to describe consistently when do neutrinos become relevant?

Profile Likelihood

$$\mathcal{L}(\sigma_{\chi n}, m_{\chi}, \phi_{\nu})$$

Neutrino Discovery Limit Due to our lack of knowledge on neutrino fluxes

Uncertainities on the neutrino fluxes.

Maximum Likelihood

$$\mathcal{L}(\hat{\theta}|N) = P(\hat{\theta}|N) = \frac{(b + \mu(\hat{\theta}))^N e^{-(b + \mu(\hat{\theta}))}}{N!} \qquad \text{Number of DM+v events}$$

Ranges considered

$$0 \le |g_V^{\nu}| \le 5, \quad 0 \le |g_A^{\nu}| \le 5, \quad 0 \le |g_V^{\chi}| \le 1$$

LUX

- Target: Xenon
- We considered efficiency of LUX-2016
- Exposure: 3.35*10^4 kg-day
- N=2, b=1.9, per ton-year

LΖ

DARWIN

- Target: Xenon
- NR efficiency of 50%
- Exposure: 15 ton-year
- N=1, b=0.64, per ton-year
- Target: Xenon
- NR efficiency of 30%
- Exposure: 200 ton-year
- N=1, b=0.64, per ton-year

Sensitivity to DM-nucleon scattering - 4

Sensitivity to DM-nucleon scattering - 5

Neutrino Floor – Eth LUX

NSI - Flavour dependent coefficient

$$\begin{split} [\mathcal{Q}_{\mathrm{NSI}}^{\alpha}]^{2} &= 4 \Bigg\{ \left[N\left(-\frac{1}{2} + \epsilon_{\alpha\alpha}^{u,V} + 2\epsilon_{\alpha\alpha}^{d,V} \right) + Z\left(\frac{1}{2} - 2\sin^{2}\theta_{W} + 2\epsilon_{\alpha\alpha}^{u,V} + \epsilon_{\alpha\alpha}^{d,V} \right) \right]^{2} \\ &+ \sum_{\beta \neq \alpha} \left[N\left(\epsilon_{\alpha\beta}^{u,V} + 2\epsilon_{\alpha\beta}^{d,V} \right) + Z\left(2\epsilon_{\alpha\beta}^{u,V} + \epsilon_{\alpha\beta}^{d,V} \right) \right]^{2} \Bigg\} \end{split}$$

CaWO₄

 dR/dE_R [ton-year-keV]

 $CaWO_4$ $CaWO_4$ 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 $^{7}\text{Be}+^{13}\text{N} + ^{7}\text{Be}+^{13}\text{N} + ^{8}\text{B}$ W 8 Ca ${}^{8}B + {}^{8}B$ Ο $^{7}\text{Be}^{+13}\text{N} + ^{8}\text{H}$ $pep+^{15}O+^{17}F$ $^{7}\text{Be}^{13}\text{N} + ^{7}\text{Be}^{13}\text{N} + ^{8}\text{B}$ 6 $pep+^{15}O+^{17}F_{e}$ $-7Be+^{13}N + ^{8}B$ $^{7}\text{Be}+^{13}\text{N}$ $\mathrm{dR}/\mathrm{dE}_R|_{\mathrm{SM}}$ pp 4 $+ {}^{8}B$ $\mathbf{2}$ BF

 $E_{\rm D}$ [keV]