Choosing the On-Shell RS in the Complex MSSM

Federico von der Pahlen

U. Antioquia

in collaboration with S. Heinemeyer, C. Schappacher

Based on Phys. Rev. D 86 (2012) 075023 Eur. Phys. J. C 72 (2012) 1892 Comp. Phys. Commun. 185 (2014) 1529

MOCa 2018, Bogotá, 31 July 2018

Outline: On-shell RS in the Complex MSSM

- Introduction
- Fully Automated Calculations in the cMSSM: Implement Renormalization in FeynArts/FormCalc
- RS choice in the chargino/neutralino sector
- Conclusions

Introduction

Low Energy Supersymmetry (here MSSM)

- Solves hierarchy/naturalness problem: Higgs mass stable against rad.corr. $m_H \sim \mathcal{O}(M_Z)$
- Provides a natural candidate for CDM: here the neutralino $\tilde{\chi}_1^0$ $m_{\tilde{\chi}^0/\tilde{\chi}^\pm} < \mathcal{O}(\text{TeV})$
- Unification of gauge couplings @ M_{GUT} : GUT relations?

CP-violation

- Baryon asymmetry: CP-violation in the SM not large enough MSSM with complex couplings (cMSSM)
 ⇒ new sources of CP-violation
 - riew sources of CF-violation

Why precisition calculations for DM & why in the MSSM?

thermal relic DM \Rightarrow most allowed scenarios coannihilation channels \Rightarrow very sensitive to mass differences \Rightarrow need on-shell masses! Δm needs to be precisely computed to determine model parameters!

[Mastercode Colab., 1710.11091]

Why precisition calculations for DM & why in the MSSM?

thermal relic DM \Rightarrow most allowed scenarios coannihilation channels \Rightarrow very sensitive to mass differences need on-shell masses! Δm needs to be precisely computed

- to determine
- model parameters!

[Mastercode Colab., 1710.11091]

Why precisition calculations for DM & why in the MSSM?

compressed spectra typical for other WIMP DM models: small DM couplings, enhanced @freeze-out \Rightarrow

avoid constraints (DD,ID,LHC)

[Mastercode Colab., 1710.11091]

Federico von der Pahlen, MOCa 2018

Precision calculations must match experiemental precision Examples:

- m_h @ 2-Loop requires 1-Loop subrenormalization
- 1-Loop Branching ratios: renormalization of all sectors

We need:

- Consistent renormalization of the full cMSSM
- Implementation in FA/FC for fully automated calculations

Renormalization Scheme:

- Mostly on-shell: all processes with on-shell external particles
- Need criteria to decide between possible RS choices

Aim

- What is the best choice of On-Shell RS?
- Need quantitative prescription
 - automate this choice!
 - implement in code
- Switch between RS: needed to scan over full parameter space
- Compare different RS:
 - estimate 1-loop uncertainties
 - analyze full set of observables in different RS

The Grand Scheme

The Big Question: which Lagrangian describes the world?

- The LHC may discover BSM physics soon
- \Rightarrow precise measurements at the ILC
- Theory calculations must match experiemental precision:
 - -masses
 - -cross sections
 - -branching ratios
 - -angular distributions
 - -etc.
- We focus on the MSSM
 - Enlarged Higgs sector: two Higgs doublets
 - Many scales
 - complex phases

Fully Automated cMSSM Calculations

Generic problems for SUSY loop calculations:

- SUSY has to be preserved in the calculation
- Many different mass scales
- Many more mass scales than free parameters
- Even more parameters: mixing angles, complex phases
- Renormalization is much more involved than in the SM —much less explored than in the SM
 - -has to preserve/respect mass relations
 - -depend on mass scales realized in Nature
 - -sometimes no really good solution exists (e.g. $\tan \beta$)
 - -many sectors enter at the same time
 - \Rightarrow this was the biggest issue!

Recap: chargino and neutralino sectors

argino and neutralino mass matrices:

$$\begin{split} & \text{hass} = \left(\tilde{W}^{\pm} \ \tilde{H}^{\pm}\right) \cdot \begin{pmatrix} M_2 & \sqrt{2}\sin\beta M_W \\ \sqrt{2}\cos\beta M_W & \mu \end{pmatrix} \cdot \begin{pmatrix} \tilde{W}^{\pm} \\ \tilde{H}^{\pm} \end{pmatrix} \\ & \tilde{H}^0 \tilde{W}^0 \tilde{H}^0_1 \tilde{H}^0_2 \right) \cdot \begin{pmatrix} M_1 & 0 & -M_Z s_W \cos\beta & M_Z s_W \sin\beta \\ 0 & M_2 & M_Z c_W \cos\beta & -M_Z c_W \sin\beta \\ -M_Z s_W \cos\beta & M_Z c_W \cos\beta & 0 & -\mu \\ M_Z s_W \sin\beta & -M_Z c_W \sin\beta & -\mu & 0 \end{pmatrix} \cdot \begin{pmatrix} \tilde{B}^0 \\ \tilde{W}^0 \\ \tilde{H}^0_1 \\ \tilde{H}^0_2 \end{pmatrix} \end{split}$$

agonalization \Rightarrow Higgsinos and gauginos mix:

 $\tilde{W}^{\pm}, \tilde{H}^{\pm} \to \tilde{\chi}_1^{\pm}, \tilde{\chi}_2^{\pm}:$ chargino mass eigenstates $\tilde{W}^0, \tilde{H}_1^0, \tilde{H}_2^0 \to \tilde{\chi}_1^0, \tilde{\chi}_2^0, \tilde{\chi}_3^0, \tilde{\chi}_4^0:$ neutralino mass eigenstates

mmon parameters \Rightarrow relations between masses and couplings

Renormalization of the cMSSM

- Example: Chargino and neutralino sector
- **On-shell renormalization**
 - renormalize 3 (complex) parameters: $M_1,~M_2,~\mu$
 - chargino-neutralino sector \Rightarrow 6 mass paramters:

$$m_{\tilde{\chi}_{i}^{\pm}}, \ i = 1, 2, \ m_{\tilde{\chi}_{j}^{0}}, \ j = 1, \dots, 4$$

Renormalization of the cMSSM

- Example: Chargino and neutralino sector
- **On-shell renormalization**
 - renormalize 3 (complex) parameters: M_1, M_2, μ
 - chargino-neutralino sector \Rightarrow 6 mass paramters:

$$m_{ ilde{\chi}_i^\pm}, \ i=1,2$$
, $m_{ ilde{\chi}_j^0}, \ j=1,\ldots,4$

 CCN_{j} scheme: choose $m_{\tilde{\chi}_{1}^{\pm}}, m_{\tilde{\chi}_{2}^{\pm}}, m_{\tilde{\chi}_{j}^{0}}$ on-shell $\Rightarrow \delta M_{1}, \ \delta M_{2}, \ \delta \mu$ remaining masses receive finite mass shifts

Q: why $m_{\tilde{\chi}_1^\pm}, m_{\tilde{\chi}_2^\pm}, m_{\tilde{\chi}_j^0}$?

 $\mathsf{CCN}_j \text{ scheme: choose } m_{\tilde{\chi}_1^\pm}, m_{\tilde{\chi}_2^\pm}, m_{\tilde{\chi}_j^0} \text{ on-shell} \Rightarrow \delta M_1, \ \delta M_2, \ \delta \mu$

$$\begin{split} & \left[\widetilde{\mathsf{Re}}\hat{\Sigma}_{\tilde{\chi}_{i}^{\pm}}(p)\right]_{ii}\tilde{\chi}_{i}^{\pm}(p)\Big|_{p^{2}=m_{\tilde{\chi}_{i}^{\pm}}^{2}} = 0, \qquad (i = 1, 2), \\ & \left[\widetilde{\mathsf{Re}}\hat{\Sigma}_{\tilde{\chi}_{j}^{0}}(p)\right]_{jj}\tilde{\chi}_{j}^{0}(p)\Big|_{p^{2}=m_{\tilde{\chi}_{j}^{0}}^{2}} = 0, \end{split}$$

3 eqs. define 3 complex parameters & field renormalization const. Mass shifts

$$\begin{split} m_{\tilde{\chi}_{k}^{0}} &= m_{\tilde{\chi}_{k}^{0}}^{(0)} + \Delta m_{\tilde{\chi}_{k}^{0}}, \qquad (k = 1, \dots, 4; \ k \neq j) \\ \Delta m_{\tilde{\chi}_{k}^{0}} &= -\frac{1}{2} \mathsf{Re} \big\{ \widetilde{\mathsf{Re}} \big[m_{\tilde{\chi}_{k}^{0}} \hat{\Sigma}_{\tilde{\chi}_{k}^{0}}^{L} (m_{\tilde{\chi}_{k}^{0}}^{2}) + \hat{\Sigma}_{\tilde{\chi}_{k}^{0}}^{SL} (m_{\tilde{\chi}_{k}^{0}}^{2}) + (L \leftrightarrow R) \big] \big] \end{split}$$

Choose masses of charged particles as input to avoid IR divergencies

On-Shell schemes have numerical instabilities for some parameters! \rightarrow f.i. $|\mu| = M_2$, example in next slides \Rightarrow no fundamental problem, need alternative RS conditions

 $\begin{aligned} & \mathsf{CCN}_{j} \text{ scheme: } \left(m_{\tilde{\chi}_{1}^{\pm}}, m_{\tilde{\chi}_{2}^{\pm}}, m_{\tilde{\chi}_{j}^{0}} \text{ on-shell} \right) \\ & \mathsf{CNN}_{i,j,k} \text{ scheme: } \left(m_{\tilde{\chi}_{i}^{\pm}}, m_{\tilde{\chi}_{j}^{0}}, m_{\tilde{\chi}_{k}^{0}} \text{ on-shell} \right) \\ & \mathsf{NNN}_{i,j,k} \text{ scheme: } \left(m_{\tilde{\chi}_{i}^{0}}, m_{\tilde{\chi}_{j}^{0}}, m_{\tilde{\chi}_{k}^{0}} \text{ on-shell} \right) \\ & \mathsf{Shift} \text{ mass of chargino only if not an external particle!} \end{aligned}$

to avoid introducing higher order IR singluarities

Example: mass shifts in CNN_{213} & CNN_{212} Ren.Schemes

Example: mass shifts in CNN_{213} & CNN_{212} Ren.Schemes

- CNN212 unstable at $\mu = M_2$
- CNN213 unstable at $M_2 \approx M_1$

Renormalization schemes: matching

No on-shell scheme works everywhere: here $|\mu| \simeq |M_2|$ region

Beware: M_1, M_2, μ renormalized in each RS \Rightarrow should compare schemes as function of same $\overline{\text{DR}}$ parameters!

Renormalization schemes: matching

No on-shell scheme works everywhere: here $|\mu| \simeq |M_2|$ region

- "good RS" \Rightarrow smaller rad. corrections
- different schemes
 ⇒ theory uncertainty
- implement results in FA/FC: matching of RSs

Analysis of Δm in CCN, CNN, NNN [Chatterjee, Drees, Kulkarni, Xu 2011]

Conclude that best choice is:

$\mathsf{CNN}_{i,j,k}$ scheme:

- $m_{\tilde{\chi}_i^\pm}$ wino-like
- $m_{ ilde{\chi}_{j}^{0}}$ bino-like
- $m_{ ilde{\chi}^0_k}$ higgsino-like

but:

- what about mixed scenarios?
- which higgsino? (pseudo-Dirac system \Rightarrow opposite relat. intrinsic CP)
- need quantitative prescription!

Dark Matter relic density scans in the MSSM very sensitive to Δm [Beneke,Bharucha et al '16] choose as "best":

- $M_2 < |M_1| < |\mu|$: CNN[1,2,3] ($ilde{\chi}^0_3$; m < 0 higgsino)
- $M_2 < |\mu| < |M_1|$: CNN[1,2,4] ($ilde{\chi}_2^0$; m < 0 higgsino)
- Scan choice needs too much human input and insight (error prone, slow, ...)!
- Interesting DM scenarios: coannihilation ⇒ mixed scenarios! (see e.g. [Beneke,Hellmann,Ruiz-Femenía '14][Harz,Herrmann,Klasen'16])
 → implementation in spectrum generators! FeynArts/FormCalc/LoopTools ⇒ FeynHiggs

(notation: $\mathbf{M}_{\tilde{\chi}^{\pm}} = V^* \mathbf{X}^T U^{\dagger}$, $\mathbf{M}_{\tilde{\chi}^0} = N^* \mathbf{Y} N^{\dagger}$)

- Starting point $[\delta \mathbf{M}_{\tilde{\chi}^{\pm}}]_{ii} = [V^* \delta \mathbf{X}^T U^{\dagger}]_{ii}$ $[\delta \mathbf{M}_{\tilde{\chi}^0}]_{ii} = [N^* \delta \mathbf{Y} N^{\dagger}]_{jj}$ & On-Shell Ren.Cond.
- leads to linear equations:

 $f_i(\Sigma) + g_i(\delta M_W, \delta M_Z, \delta \tan \beta, \delta \sin \theta_W) := \delta \tilde{m}_{\tilde{\chi}_i^{\pm}}$ $= a_{i1} \delta M_1 + a_{i2} \delta M_2 + a_{i3} \delta \mu$

⇒ solve for $\delta M_1 \delta M_1, \delta M_2, \delta \mu$: need to invert $A \equiv \{a_{ij}\}$ ⇒ only possible if A can be inverted

measure of good RS: $|\det A| \gg 0$ (max $|\det A|$ normalized to 1)

Ren.Scheme tests: (example)

Ren.Scheme tests: (example)

- need to switch On-Shell Ren.Schemes in any scan
- choice should be automized

Ren.Scheme selection

- (a) RS w/ no mass-shifts on external charged particles necessary to avoid IR singularities (loops w/same internal & external masses)
- (b) RS with $|detA| \gtrsim 0.3$? Analysis in progress.
- (c) FormCalc allows run-time selection of Ren.Schemes
 ⇒ code only needs selection condition: work in progress

- tree-level differ due to $\overline{\mathrm{DR}}
 ightarrow \mathrm{OS}$ parameter-shift
- NLO results converge at low M_2 (@ larger $|\mu-M_2|$)

Federico von der Pahlen, MOCa 2018

 $\tilde{\chi}_4^0 \rightarrow \tilde{\chi}_1^0 Z$ in CCN₁, CNN₁₁₃ & CNN₂₁₃, $\overline{\mathrm{DR}}$ paramters

 $\tilde{\chi}_4^0 \rightarrow \tilde{\chi}_1^0 Z$ in CCN₁, CNN₁₁₃ & CNN₂₁₃, $\overline{\mathrm{DR}}$ paramters

- tree-level differ due to $\overline{\mathrm{DR}}
 ightarrow \mathrm{OS}$ parameter-shift
- NLO results converge at low M_2 (@ larger $|\mu-M_2|$)

Federico von der Pahlen, MOCa 2018

Summary

- Renormalization of the full complex MSSM under control: FeynArts 3.9 MSSMCT model file including complete 1-loop renormalization
- FormCalc (≥ 8.4): run-time Ren.Scheme selection
 → implement automatic selection of on-shell ren.scheme
 in the chargino/neutralino sector
- evaluate scheme dependence and uncertanties for masses, $1 \rightarrow 2$ and $2 \rightarrow 2$ processes.
- procedure extendable to other sectors & other models

backup transparencies

cMSSM @ one-loop: overview

- Higgs wave function renormalization and $\tan\beta$: $\overline{\mathrm{DR}}$
- Higgs masses: on-shell. Z_H -matrix: $h, H, A \rightarrow h_1, h_2, h_3$ [FeynHiggs]
- electroweak gauge bosons: on-shell
- quark sector: internal $m_b \overline{\text{DR}}$, external m_b on-shell, other quarks on-shell
- squark sector: $A_b \overline{\text{DR}}$, squarks on-shell
- lepton/slepton sector: on-shell
- chargino-neutralino sector: on-shell

Fully Automated cMSSM Calculations: Higgs sector

- Higher-order corrections phenomenologically very important
- But: including these corrections on propagators and vertices mixes orders of perturbartion theory
- \Rightarrow no cancellation of UV and IR divergencies
- Masses of Higgs propagators should be consistent with mixing angle α parametrizing the vertices

Fully Automated cMSSM Calculations: Higgs sector

- Higher-order corrections phenomenologically very important
- But: including these corrections on propagators and vertices mixes orders of perturbartion theory
- \Rightarrow no cancellation of UV and IR divergencies
- Masses of Higgs propagators should be consistent with mixing angle α parametrizing the vertices
- Recipe:
 - Vertices with tree-level α
 - Loop propagators with tree-level Higgs masses
 - tree propagators with loop-correctied masses

Ily Automated cMSSM Calculations Automatic Diagram Eval

- FeynArts: Diagram generation: ⇒ Amplitudes
 - create topologies
 - insert fields
 - apply Feynman rules
 - paint diagrams
- FormCalc: Algebraic simplification
 - contract indices
 - calculate traces
 - reduce tensor integrals
 - introduce abbrevations
- FormCalc : numerical evaluation
 - convert Mathematica output to Fortran code
 - supply driver routines
 - link LoopTools: implement integrals
- ightarrow Squared amplitudes

Fully Automated cMSSM Calculations Modelfile

 Modelfile MSSMCT : complex MSSM including all one-loop counterterms

Fully Automated cMSSM Calculations: Higgs sector

- Recipe:
 - Vertices with tree-level α
 - Loop propagators with tree-level Higgs masses
 - tree propagators with loop-correctied masses
- Implementation in FeynArts:

```
S[1] == {
  Mass -> Mh0,
  Mass[Loop] -> Mh0tree, ... }
```

Fully Automated cMSSM Calculations: CKM and NMFV

- MSSMCT presently limited to minimal flavor violation (MFV) in the Sfermion Sector (Only mixing within each generation)
- for non-trivial CKM matrix:
 ⇒ imbalance between fermions and sfermions
- CKM mixing turned off by default may be switched on: \$CKM == True

Run-time Renormalization Scheme selection

- Choice of RS conditions dependent on parameter: (e.g. Chargino/Neutralino sector)
- Schemes require different computation of a set of Renormalization Constant,
 e.g. dMino11, dMino21, dMUE1
- Solution1: dMUE1 = IndexIf[cond, $\delta\mu^A, \delta\mu^B$]
- However: dependences cannot be resolved with individual IndexIfs f.i.: Scheme A: $\delta \mu = f(\delta M_1)$ Scheme B: $\delta M_1 = f(\delta \mu)$
- Solution2: One-pass ordering collects & recurses on IndexIfs

Run-time RS selection: One-pass ordering

```
\begin{aligned} \text{IndexIf}[cond, \\ \text{dMino11} &= \delta \mu^A (\delta M_1^A); \\ \text{dMUE1} &= \delta \mu^A (\delta M_1^A); \\ \text{dMino21} &= \delta M_2^B, \\ (* \text{ else } *) \\ \text{dMUE1} &= \delta \mu^B; \\ \text{dMino11} &= \delta M_1^B (\delta \mu^B); \\ \text{dMino21} &= \delta M_2^B ]; \end{aligned}
```

 \rightarrow

Run-time RS selection

Scheme switching selected as

- \$InoScheme = IndexIf[cond, CNN[2,1,3], CNN[1]] where cond might be Abs[Abs[MUE]] - Abs[Mino2]] < 50 to chose most stable RS for $|\mu| \approx |M_2|$
- \$InoScheme = CCN[1] where nbino is determined at run-time to be the most bino-like neutralino

Warning:

note that a renormalization-scheme switch in principle requires a corresponding transition of the affected parameters from one scheme to the other for a fully consistent interpretation of the results

Where are we? (a selection!)

- 1. Neutral Higgs boson masses
- $\mathcal{O}(\alpha_t \alpha_s)$ in the cMSSM [Heinemeyer, Hollik, Rzehak, Weiglein '07]
- $\mathcal{O}\left(\alpha_t \alpha_s^2\right)$, $\mathcal{O}\left(\alpha_t^2 \alpha_s\right)$, rMSSM [Martin '07]
- $\mathcal{O}(\alpha_t \alpha_s^2)$, rMSSM (incl. fin. terms) [Harlander, Kant, Mihaila, Steinhauser '08]
- FD \oplus log resummation [Hahn, Heinemeyer, Hollik, Rzehak, Weiglein '13]
- 2. Charged Higgs mass
- full 1-loop [M. Frank et al. '06]
- $\mathcal{O}(\alpha_t \alpha_s)$ [Frank et al. '13]

Where are we? (a selection!) II

- 3. Production cross sections at the LHC
 - gg → h at 2-loop [Anastasiou et al. '08] [Mühlleitner et al. '08] [Slavich et al. '11]
 [Harlander et al. '12 (SusHi)] [Bagnaschi et al. '14]
 - WBF at 1-loop [Ciccolini et al. '07] [Hollik et al. '08] [Palmer, Weiglein '11]
 - bb → h: 4FS vs. 5FS, Santander matching
 [Dittmaier et al. '06] [Dawson et al. '06] [Harlander et al. '11] [Maltoni et al. '12]
 - Z-factors at 2-loop [Frank, Hahn, Heinemeyer, Hollik, Rzehak, G. Weiglein '06]

Where are we? (a selection!) III

- 4. Higgs decays to SM
 - full 1-loop, leading 2-loop, ... (depending on final state) [...]
 - Z-factors at 2-loop [Frank, Hahn, Heinemeyer, Hollik, Rzehak, Weiglein '06]
- 5. Higgs decays to SUSY
- full 1-loop (depending on final state) $[\dots]$
- Z-factors at 2-loop [Frank, Hahn, Heinemeyer, Hollik, Rzehak, G. Weiglein '06]
- 6. SUSY decays to Higgs bosons
- (partial) 1-loop, rMSSM [...]
- (partial) 1-loop, cMSSM [Rzehak, Weiglein, Williams]
 [Bharucha, Fritzsche, Heinemeyer, FP, Rzehak, Schappacher]

What is missing? (a selection!)

- 1. Neutral Higgs boson masses
- full 2-loop
- more 3-loop (and in "easier accessible" scheme?)
- leading 4-loop
- improved log resummations
- 2. Charged Higgs boson mass
 - leading 2-loop
- 3. Higgs decays
 - full 1-loop in the r/cMSSM (some final states)
 - leading 2-loop
- 4. Decays to Higgs bosons
- full 1-loop in the rMSSM
- full 1-loop in the cMSSM
- \Rightarrow provide corresponding codes!