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Motivations

* No conclusive signatures of DM in collider and direct detection
experiments.

* DM might be part of a hidden sector, minimally coupled to the
Standard Model.

[Pospelov+ 2007 (0711.4866), Arkani-Hamed+ 2009 (0810.0713), Hooper+ 2012 (1206.2929), Berlin+ 2014
(1405.5204)]

Hidden sector:
DM + other

products from
inflation
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Sighatures of Annihilation

Annihilation power « p?

Annihilates with

cross-section {gv) Annihilation Boost: The “extra”
annihilation signal due to
“clumpiness” in the distribution

of DMVI.
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A Gap In The History of the Universe
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Alternative Thermal Histories and EMDEs

BBN CMB Now . .
0.07MeV ST < 3MeV T = 0.25eV T —=93x%x 10 %4eV A possible period
0.08sec St S4min ¢t = 380,000yr t = 13.8 Gyr of matter
domination
Radiation Matter between inflation
Domination Domination and BBN, caused
1172 by particles in the
@8 ) hidden sector.
Prad X @
I?Zevheit’r’?,g Matter- Matter\ Equality Zhang 2015 (1502.06983)
I Radiation T =32x%x10"%eV Berlin+ 2016 (1602.08490)
Equality t=9.5 Gyr Dror+ 2016 (1607.03110)
T — 074 eV See 2006.16182 for a general review

t =57,000yr
Credit: Adrienne Erickcek



Effects of an EMDE

DM perturbations grow linearly with
scale factor in the EMDE.

[Erickcek and Sigurdson 2011 (1106.0536)]
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This linear growth introduces a rise in the matter power
spectrum.

As a result, structure can form much earlier than in a LCDM
Universe, contributing to the DM annihilation boost.
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Impact of a Small-Scale Cut-Off

 The DM annihilation boost is
sensitive to any small-scale cut-

off in the matter power 1012 T
spectrum. z n +
- + . S
o 107 3 + S o
* The cut-off scale sets the sizes < = i g o
and formation times of the "] o R
microhalos that form due to an ]+ °© _
EMDE 1o o O Tru =2 GeV
. 0 1 O O Tru = 10 MeV
10 E (I) 1 | I I
20 25 30 35 40

* Changing the cut-off scale by a .
factor of 2 changes the boost by a cut/ krH
factor of roughly a 100! (Delos+
2020: 1910.08553)
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Scenario: Long-Lived Particle in the Hidden Sector

Y Particles

Dark matter
(hidden sector)

The Y particles are relativistic in the early universe
Y particles: Feebly coupled to SM -- decay into

SM particles, via:

Higgs portal [Burgess+ 2011 (hep-ph/0011335)]
Vector portal [Krolikowski 2008 (0803.2977)]
Lepton portal [Bai+Berger 2014 (1402.6696)]

DM annihilation channel:
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Homogeneous Background Evolution

Universe has three components: Y particles, DM,
and the bath of relativistic SM particles.

1. Y particles in hidden sector: initially
relativistic and transitions to nonrelativistic
behavior.

2. The energy density of the Y particles
dominates the Universe after the particles
become nonrelativistic. This is the EMDE.

3. Y particles are minimally coupled to the
Standard Model and decay into the SM bath
with decay rate I'. Y particle decay increases
rapidly at reheating and radiation
domination is restored.
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Perturbation Evolution

We employ a Boltzmann solver to evolve the density and velocity
perturbations in DM, Y, and radiation.
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Which Modes Are Affected?

Damped harmonic oscillator
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Jeans Length

=== Horizon
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Perturbation Amplitude in k-space
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Transfer Functions

Oy  is calculated easily. Calculating 0y is expensive.

The transfer function models the relationship between the two:

(k) = 5?/0((12)

Encodes the effect of the pressure of the Y particles on the power
spectrum.
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Transfer Functions

. . E\"
Fit to the functional form exp l— (k ) ]
cut

We provide the cut-off scale and n
in terms of model parameters:

o 1- T : 0.9 4 === Numerical Solution
7; the inftial atio of Yo S
 m: the mass of the Y particles S 55
* The statistics of the Y particles < 5 0 /\N
10° 10* 102 103 10*

We find that our expressions k/kru

show excellent agreement with
numerical results!
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Calculating the Boost 1+« £
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Gravitational Heating: Destroying Structure

Slice at a/ary = 0.01, a/a.q = 0.0000
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Free-Streaming via Gravitational Heating

PS at a/ary = 0.100, Snap 1
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Summary

* We solved for the evolution in the density perturbations for this long-lived
particle and DM, analyzing the suppression of perturbation growth due to
the relativistic pressure of the Y particles.

* We provided transfer functions to reproduce the effect of the pressure of
the dominant hidden sector particle on the matter power spectrum. We

related the transfer function parameters to physical properties of the
hidden sector.

* We have calculated the DM annihilation boost resulting from an EMDE
using our transfer functions.

e Future work: simulating gravitational heating.
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Observational Constraints

107° FIG. 5. Some of the features and constraints found across the
parameter space of the vector portal dark matter model, for

1077 the case of &inr = 1 and mx /myz = 20. The dashed curves
represent the regions of this plane which yield a relic abun-

10-8 dance equal to the measured dark matter density, Qxh? ~
0.11, for choices of ax = 0.01 and ax = 0.1. In the blue

10-9 region, the hidden sector never dominates the energy den-
sity of the early universe, and the red region is excluded by

the measured light element abundances and other cosmolog-

10710 ical considerations. Throughout the grey region, the EMDE
leads to the formation and survival of a large population of

10~11 microhalos, resulting in large boost factors (following our con-
servative procedure) that are currently ruled out by Fermi’s

10-12 measurement of the high-latitude gamma-ray background. In
the lower right portions of this figure, gravitational heating

s leads to the suppression of this microhalo population, reduc-
10 102 103 104 10 106 ing the boost factors and resulting gamma-ray emission to

mx (G eV) acceptable levels. Note that in the lowest portions of the re-
gion labeled “No Early Matter-Dominated Era”, the energy
density of the Z’ population is still sizable, leading to non-
negligible contributions to the annihilation boost factor.

Blanco+ 2019 (1906.00010)
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Constraints Using Fermi IGRB
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FIG. 9. Upper bounds on the cross section for dark matter
annihilating to bb for two reheat temperatures Tr = 10 MeV
(top) and Tru = 2 GeV (bottom). In each case, we consider
both kcut/kru = 20 (green) and kcut/krua = 40 (blue) and
plot both the conservative and aggressive bounds derived from
Fermi-LAT’s measurement of the IGRB; see the text. The
shaded region on the left is disallowed because it would over-
close the Universe, while the shaded region on the right marks
where the dark matter’s coupling constant exceeds unity. The
black hatched region fails Eq. (2) while the white hatched
regions (different for each kcyu/kru) fail Eq. (1). The density
fluctuation power spectra we employed do not apply within
these regions, so constraints therein are tentative; further work
is needed to account for the altered power spectra.

Sten Delos+ 2020 (1910.08553)



Growth of Structure

Power spectrum: Measures the “clumpiness” of DM
at a given time as a function of scale, in Fourier
space.

Fourier transform of the two-point correlation
function of the perturbation field.

Structure has formed on all these scales today.
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Density perturbation:

P(k,a) = (6°(k,a))

When <5> ~ ]_ at any scale, the matter is
dense enough to form a bound structure
that remains bound by gravity and overcomes

the expansion of the universe.



