Forecasting detections of gravitational-wave tails from LIGO data PPC 2022 Matthew Carney

Collaborators: Jeremy Baier, Les Wade, Maddie Wade, Glenn Starkmann, Craig Copi, Jim Mertens

The search for GWs

- 9/15/14 First confirmed detection of GW's from binary black hole (BBH) merger
- Represents two major breakthroughs:
 - New form of "astronomy"
 - New tests of fundamental gravitational effects

Abbott, B. P., Abbott, R., Abbott, T. D., Abernathy, M. R., Acernese, F., Ackley, K., ... & Cavalieri, R. (2016). Physical review letters, 116(6), 061102.

6

8

amplitude rmalized **S** ()

The search for GWs

- 9/15/14 First confirmed detection of GW's from binary black hole (BBH) merger
- Represents two major breakthroughs:
 - New form of "astronomy"
 - New tests of fundamental gravitational effects

Abbott, B. P., Abbott, R., Abbott, T. D., Abernathy, M. R., Acernese, F., Ackley, K., ... & Cavalieri, R. (2016). Physical review letters, 116(6), 061102.

6

8

amplitude rmalized ■ () ■ Z

Gravitational Glint

- Similar to lensing
- Predicted "tails" of gravitational wave signals
- Near-identical (scaled) signal at a later time
- Dependent on geometry of system, n_E , and mass of perturber, M_P

Copi, C., & Starkman, G. D. (2022). arXiv preprint arXiv:2201.03684.

$$n_E \equiv \sqrt{\frac{4G_N M_P D_{OP} D_{PS}}{c^2}} \frac{D_{OP} D_{PS}}{D_{OS}}$$

Gravitational Glint

- Total strain will be original signal + echo
 - $h(t) = h_{\rm s}(t) + \epsilon h_{\rm s}(t \Delta t)$
- Adds a phase factor in frequency space $\tilde{h}(f) = \tilde{h}_{c}(f)(1 + \epsilon e^{-2\pi f \Delta t})$
- Where $\tilde{h}_{s}(f) = \mathscr{F}\{h_{s}(t)\}$ is the Fourier transform of the original signal
- Want to constrain the two parameters $\{\epsilon, \Delta t\}$
 - related to the system's geometry and perturber mass

Gravitational Glint

- Total strain will be original signal + echo
 - $h(t) = h_{\rm s}(t) + \epsilon h_{\rm s}(t \Delta t)$
- Adds a phase factor in frequency space $\tilde{h}(f) = \tilde{h}_{s}(f)$
- Where $\tilde{h}_{s}(f) = \mathscr{F}\{h_{s}(t)\}$ is the Fourier transform of the original signal
- Want to constrain the two parameters $\{\epsilon, \Delta t\}$
 - related to the system's geometry and perturber mass

Eventually, $\{\epsilon, \Delta t\} \rightarrow \{M_P, n_E\}$

$$(f)(1 + \epsilon e^{-2\pi f \Delta t})$$

Parameter Estimation

- High-dimensional parameter space
 - 16+ independent parameters
- Markov-chain Monte Carlo and nested sampling algorithms
 - Samples Bayesian posterior distribution (and evidence)
- Modified to include effect of a generic echo signal characterized by amplitude and time shift, $\{\epsilon, \Delta t\}$

Ashton, G., Hübner, M., Lasky, P. D., Talbot, C., Ackley, K., Biscoveanu, S., ... & Thrane, E. (2019). The Astrophysical Journal Supplement Series, 241(2), 27.

Simulated results: fiducial BBH, restricted

 $\epsilon_{glint} = 0.5$

 $\Delta t_{glint} = 0.015$

Simulated results

Bayes factors = (Evidence with echo recovery) / (Evidence without echo recovery)								
	0.01	0.2	0.4	0.6	0.8	1		
0.00375	-2.638	-2.827	2.008	21.49	47.977	80.561		
0.0075	-2.484	-2.555	2.758	21.223	46.689	82.01		
0.015	-2.681	-2.513	5.555	27.358	57.232	89.392		
0.5	-2.563	-2.303	6.774	27.625	60.51	100.067		
1	-2.794	-2.742	7.105	28.4	60.621	100.192		
Кеу								
-5	-3	-1	0	1	3	5		
Very Strong	Strong	Positive		Positive	Strong	Very Strong		

Simulated results: fine tuning

- Finer search for turn-over point
 - Fix $\Delta t = 0.015s$
 - Smaller increments in ϵ

	Fine combing runs, dt=0.015s		
0.218	-2.535		
0.236	-2.39		
0.254	-2.238		
0.272	-1.876		
0.29	-1.448		
0.309	-0.119		
0.327	0.699		
0.345	1.948		
0.363	3.714		
0.381	4.645		

Glint model becomes preferred at $\epsilon \approx 3.1$

Simulated results: fiducial BBH, restricted

 $\epsilon_{glint} = 0.6$

 $\Delta t_{glint} = 0.005$

Simulated results: fiducial BBH, restricted

 $\epsilon_{glint} = 0.6$

 $\Delta t_{glint} = 0.005$

Conclusions

- GW astronomy provides direct probe of new gravitational effects
 - Gravitational glint effect produces a near-identical signal
 - Potentially present in existing LIGO/Virgo data
- Addition of Glint parameters improves Bayesian evidence in injection study for reduced-dimensionality model
 - Preliminary results show improved evidence for full parameter-space model
- Analysis of LIGO/Virgo data coming soon