Polarized solitons in higher-spin dark matter

Based on

PRD 105 (2022) 5, 056019

MJ and M. Amin

PRD 105 (2022) 9, 096037

H.Y. Zhang, MJ, and M. Amin

arXiv:2203.11935 (to appear in JCAP) M. Amin, MJ, R. Karur, and P. Mocz

arXiv:2205.03418 (submitted to PRD) MJ

- More work in progress. Stay tuned

Mudit Jain

RICE

dark matter mass ?

Mass

dark matter mass ? spin ? self-interactions ? huge dark sector ?

Mass

dark matter mass ? spin ? self-interactions? huge dark sector ?

(non-topological) soliton

long lived, coherent states of a field, formed due to a balance between nonlinearities and/or dispersion

- discovered in nonlinear waves in water in canals (John Scott Russell, 1834)
- optics, hydrodynamics, BECs, high energy physics, and cosmology

self-interaction

solitons with both gravity and selfinteractions, axion stars

Executive Summary

solitons with both gravity and selfinteractions, axion stars

huge (macroscopic) intrinsic spin!

- Couplings with the Standard Model, signatures due to intrinsic spin polarization;
- Source gravitational waves?
- Cores of galaxies
- so much more

non-topological solitons

spatially localized, coherently oscillating, long-lived

spin-s field as dark matter

non-relativistic limit = multicomponent Schrödinger-Poisson

2s+1 component

Schrödinger

spin multiplicity $\lambda =$

$$m{S}_{
m tot}/\hbar=$$

- also see <u>Salesian et al</u>, <u>Adshead et al</u>, <u>Aoki et al</u>.

PRD 105 (2022) 9, 096037

- <u>Chavanis</u>, <u>Schiappacasse et al</u>, <u>Hertzberg et al</u>, <u>Croon et al</u>,...

Attractive self interactions

40

see <u>2111.08700</u> for vector Oscillons (w/o gravity)

 $M_s \times (g/m_{\rm pl})$

- <u>Chavanis</u>, <u>Schiappacasse et al</u>, <u>Hertzberg et al</u>, <u>Croon et al</u>,...

Repulsive self interactions

500 1000

Phenomenology

Gravity ~ gradient pressure (no/negligible self interactions) 2203.11935

0.34 $t/t_{\rm dyn} \longrightarrow$

- less interference in VDM

- less dense granules in VDM

res can have

- also see <u>Gorghetto et al</u>

1.36

SM coupling and radiation

 $\mathcal{L}_{int} \sim g_{\phi\gamma} \phi F_{\mu\nu} \tilde{F}^{\mu\nu}$

"Searching for axions at Magnetic White Dwarfs"

<u>Dessert et al</u>

- <u>Amin et al</u>

 $\mathcal{L}_{int} \sim g_{\phi\gamma} \phi F_{\mu\nu} \tilde{F}^{\mu\nu}$

"Searching for axions at Magnetic White Dwarfs"

<u>Dessert et al</u>

 $\mathcal{L}_{int} \sim \lambda_{\varphi h} H^{\dagger} H \Phi^{\dagger} \Phi$

- <u>Amin et al</u>

solitons with both gravity and selfinteractions, axion stars

huge (macroscopic) intrinsic spin!

Many phenomenological implications

solitons with both gravity and selfinteractions, axion stars

- Relativistic corrections (also see <u>PRD 105 (2022) 9, 096037</u>); Post Newtonian corrections - sourcing gravitational waves
- Couplings with the Standard Model, signatures due to intrinsic spin polarization;
- Dwarf galaxies core radius vs density relationship
- so much more

Thanks!