

Shufang Su • U. of Arizona

PPC2022 Washington University June 7, 2022

S. Su

10 Years into Higgs Discovery !

Time for Precision Higgs Era !

- Our wish list has not change much from 10 years ago.
- Discovery of Higgs and measurements of its property
 - ⇒ Exclude certain models (technicolor,...)
 - ⇒ Narrow down parameter space
- Non-discovery of anything else
 - ⇒ New physics gets heavier
 - → A bit uncomfortable, big picture unchanged

• Direct search for new particles

• Direct search for new particles

Need colliders with larger energies (pp or e+e- with large Ecm)

• Direct search for new particles

Need colliders with larger energies (pp or e+e- with large Ecm)

- Direct search for new particles
 Need colliders with larger energies (pp or e+e- with large E_{cm})
- Indirect search for imprints on W, Z, top and Higgs

Then What?

- Direct search for new particles
 Need colliders with larger energies (pp or e+e- with large E_{cm})
- Indirect search for imprints on W, Z, top and Higgs
 Need colliders/measurements with unprecedented accuracy

Then What?

- Direct search for new particles
 Need colliders with larger energies (pp or e+e- with large E_{cm})
- Indirect search for imprints on W, Z, top and Higgs Need colliders/measurements with unprecedented accuracy (e+e- or pp with high luminosity)

Then What?

- Direct search for new particles
 Need colliders with larger energies (pp or e+e- with large E_{cm})
- Indirect search for imprints on W, Z, top and Higgs
 Need colliders/measurements with unprecedented accuracy
 (e+e- or pp with high luminosity)

LHC / HL-LHC Plan

• Light, weakly coupled boson: $m_h = 125-126 \text{ GeV}$, $\Gamma << 1 \text{ GeV}$

- ⇒ spin 0, a new kind of fundamental particle, no charge, no structure
- \blacksquare Nothing protects its mass \Rightarrow New physics beyond the SM

• Light, weakly coupled boson: $m_h = 125-126 \text{ GeV}$, $\Gamma << 1 \text{ GeV}$

- ⇒ spin 0, a new kind of fundamental particle, no charge, no structure
- \blacksquare Nothing protects its mass \Rightarrow New physics beyond the SM

Then What?

• Light, weakly coupled boson: $m_h = 125-126 \text{ GeV}$, $\Gamma << 1 \text{ GeV}$

- ⇒ spin 0, a new kind of fundamental particle, no charge, no structure
- \Rightarrow Nothing protects its mass \Rightarrow New physics beyond the SM

<u>Then What?</u> Still a lot of hard, but fun work to do!

• Light, weakly coupled boson: $m_h = 125-126 \text{ GeV}$, $\Gamma << 1 \text{ GeV}$

- ⇒ spin 0, a new kind of fundamental particle, no charge, no structure
- \blacksquare Nothing protects its mass \Rightarrow New physics beyond the SM

<u>Then What?</u> Theoretically ...

light, weakly coupled boson: $m_h = 125-126 \text{ GeV}, \Gamma << 1 \text{ GeV}$

Then What? experimentally...

• Is it a SM Higgs? Mass, width, spin, coupling, CP,...

- Is it a SM Higgs? Mass, width, spin, coupling, CP,...
- Is there more than one Higgs boson?

- Is it a SM Higgs? Mass, width, spin, coupling, CP,...
- Is there more than one Higgs boson?
- Does this H decay to other things unexpected?

- Is it a SM Higgs? Mass, width, spin, coupling, CP,...
- Is there more than one Higgs boson?
- Does this H decay to other things unexpected?
- Can we use H to look for new physics?

- Is it a SM Higgs? Mass, width, spin, coupling, CP,...
- Is there more than one Higgs boson?
- Does this H decay to other things unexpected?
- Can we use H to look for new physics?
- Where is new physics? Top partners? Dark matter?

- Is it a SM Higgs? Mass, width, spin, coupling, CP,...
- Is there more than one Higgs boson?
- Does this H decay to other things unexpected?
- Can we use H to look for new physics?
- Where is new physics? Top partners? Dark matter?
- ...

Then What? experimentally...

- Is it a SM Higgs? Mass, width, spin, coupling, CP,...
- Is there more than one Higgs boson?
- Does this H decay to other things unexpected?
- Can we use H to look for new physics?
- Where is new physics? Top partners? Dark matter?
- •

This talk focuses on the Higgs precision measurements. Next talk by I. Lewis focuses on use Higgs as direct probe for NP.

• Introduction

- Precision Higgs measurements: current/future
- Implication of Higgs precision measurements

Precision Higgs Measurements

Precision Higgs Measurements

- Mass, width, spin, CP
- **[®] Higgs couplings**
- In differential distributions, STXS, Global fits

LHC Higgs Observation

				VBF	VH	ttH	
	Channel categories	Br	<i>g</i> ,000000 <i>g</i> ,000000 <i>H</i> <i>g</i> ,000000 	$q \longrightarrow q$ $q \longrightarrow H$ $\overline{q} \overline{q}$ $\sim 300 \text{ k vets produced}$	q' W, Z q W, Z q H ~200 k vets produced	$g \xrightarrow{g} H$ $g \xrightarrow{f} H$ $g \xrightarrow{f} H$ $g \xrightarrow{f} H$ $f \xrightarrow{f} H$	
	Cross Section 13 TeV (8 TeV)		48.6 (21.4) pb*	3.8 (1.6) pb	2.3 (1.1) pb	0.5 (0.1) pb	
Observed modes	γγ	0.2 %	✓	✓	✓	✓	
	ZZ	3%	✓	✓	✓	✓	
	WW	22%	✓	 ▲ > Sert 	1		2013
	ττ	6.3 %	✓	↓ Unc	bb	\times "	
	bb	55%	✓	otal			77
Remaining to be observed	Zγ and γγ∗	0.2 %	\checkmark	✓ + 10			
	μμ	0.02 %	✓	▲			
Limits	Invisible	0.1 %	✓ (monojet)	✓ <u>66</u> 10 ⁻	2		
				± 10 ⁻	3	Ζγ	

10⁻⁴

100

120

140

160

180 200 M_H [GeV]

LHC Precision Higgs Measurements

Couplings $\mathscr{L}_{\rm SM} = \cdots + |D_{\mu}\phi|^2 + \psi_i y_{ij}\psi_j\phi - V(\phi)$ Gauge interactions Higgs self-interactions Higgs potential (→ studied uf ont many specades unobserved iteraction). now with the scalar D, QCD, EW, Yukawa interactions. studied for many decades Holds the SM Responsible for fermion (but now with a scalar) together. Yukawasinteractions" fifth force" between fermions Unobserved new Direct study started only study started on 2018

Gavin P. Salam

Higgs 2021

LHC Precision Higgs Measurements

$\sqrt{s} = 13$ TeV, 36.1 - 13 $m_H = 125.09$ GeV $p_{SM} = 79\%$	9 fb ⁻¹		Total Stat. Syst. SM				
	A	1.00	Total +0.11	Stat. Syst.			
	Ĭ	0.05	-0.11 +0.11	$\begin{pmatrix} -0.08 & -0.07 \end{pmatrix}$			
	L.	0.95	-0.11 +0.13	(-0.10, -0.03) (+0.06, +0.12)			
	ſ	1.13	-0.12 +0.28	(-0.06, -0.10) (+0.15, +0.23)			
	1	0.87	-0.25 +0.91	(-0.15, -0.20) (+0.77, +0.49)			
ggF+ttH μμ		0.52	-0.88	$\left(\begin{array}{c} -0.79 \\ -0.38 \end{array}\right)$			
VBF γγ		1.47	-0.24	$\begin{pmatrix} -0.20 \\ -0.20 \end{pmatrix}$, $-0.14 \end{pmatrix}$			
VBF ZZ		1.31	-0.42	$\begin{pmatrix} -0.42 \\ -0.42 \end{pmatrix}$, $-0.06 \end{pmatrix}$			
VBF WW		1.09	-0.17	$\begin{pmatrix} -0.14 \\ -0.14 \end{pmatrix}$, $-0.10 \end{pmatrix}$			
VBF ττ		0.99	-0.18	$\begin{pmatrix} +0.14 \\ -0.14 \end{pmatrix}$, $\begin{pmatrix} +0.15 \\ -0.12 \end{pmatrix}$			
VBF+ggF bb		0.98	+0.38	$\begin{pmatrix} +0.31 \\ -0.33 \end{pmatrix}$, $\begin{pmatrix} +0.21 \\ -0.15 \end{pmatrix}$			
VBF+VH μμ		2.33	+1.34 -1.26	$\begin{pmatrix} +1.32 & +0.20 \\ -1.24 & -0.23 \end{pmatrix}$			
VH γγ		1.33	+0.33 -0.31	$\left(\begin{array}{c} +0.32 \\ -0.30 \end{array} , \begin{array}{c} +0.10 \\ -0.08 \end{array} \right)$			
VH ZZ 🗧		1.51	+1.17 -0.94	$\left(\begin{array}{cc} +1.14 \\ -0.93 \end{array} , \begin{array}{c} +0.24 \\ -0.16 \end{array} \right)$			
VH ττ 🕂	iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii	0.98	+0.59 -0.57	$\left(\begin{array}{c} +0.49\\ -0.49 \end{array} \right. , \begin{array}{c} +0.33\\ -0.29 \end{array} \right)$			
WH bb	÷	1.04	+0.28 -0.26	$\left(\begin{array}{c} +0.19\\ -0.19 \end{array} , \begin{array}{c} +0.20\\ -0.18 \end{array} \right)$			
ZH bb	÷	1.00	+0.24 -0.22	$\left(\begin{array}{cc} + \ 0.17 \\ - \ 0.17 \end{array} \right.$, $\begin{array}{c} + \ 0.17 \\ - \ 0.14 \end{array} \right)$			
ttH+tH γγ	•	0.93	+0.27 -0.25	$\left(\begin{array}{cc} +0.26 & +0.08 \\ -0.24 & -0.06 \end{array} \right)$			
ttH+tH WW		1.64	+0.65	$(\begin{array}{c} +0.44\\ -0.43\end{array}, \begin{array}{c} +0.48\\ -0.43\end{array})$			
ttH+tH ZZ	<u>+</u>	1.69	+ 1.69	$\left(\begin{array}{c} +1.65 \\ -1.09 \end{array}, \begin{array}{c} +0.37 \\ -0.16 \end{array}\right)$			
ttH+tH ττ •	·	1.39	+0.86	$\begin{pmatrix} +0.66 & +0.54 \\ -0.62 & -0.44 \end{pmatrix}$			
ttH+tH bb 📻		0.35	+0.34 -0.33	$\left(\begin{array}{cc} + 0.20 \\ - 0.20 \end{array} \right. , \begin{array}{c} + 0.28 \\ - 0.27 \end{array} \right)$			
4 –2 0	2	4	6	<u> </u>			
$\sigma \times B$ normalised to SM							
ATLAS_CONF_2021_053							
	AS-CO	NE-	202	1-053			

$$\kappa_f = \frac{g(hff)}{g(hff; SM)}, \ \kappa_V = \frac{g(hVV)}{g(hff; SM)}$$

NEW

	ATLAS - CMS Run 1 combination	ATLAS Run 2	CMS Run 2	Current precision
κ_γ	13%	1.04 ± 0.06	$1.01 {}^{+0.09}_{-0.14}$	6%
κ_W	11%	1.06 ± 0.06	$-1.11^{+0.14}_{-0.09}$	6%
κ_Z	11%	0.99 ± 0.06	0.96 ± 0.07	6%
κ_g	14%	$0.92^{+0.07}_{-0.06}$	$1.16^{+0.12}_{-0.11}$	7%
κ_t	30%	0.92 ± 0.10	1.01 ± 0.11	11%
κ_b	26%	0.87 ± 0.11	$1.18^{+0.19}_{-0.27}$	11%
$\kappa_{ au}$	15%	0.92 ± 0.07	0.94 ± 0.12	8%

JHEP 08 (2016) 045 ATLAS OLD 1053 1-

Still 25 times more data and reduction of a factor of 3 uncertainty!

TH uncertainty dominant!

- ${\scriptstyle \odot}$ 2-4% for most couplings, Zy 10%
- μμ, Ζγ statistical limited
- Others dominated by theoretical uncertainties

Theoretical Uncertainties

Precision Measurements @ Higgs Factory

collider	CEPC	FCC-ee			ILC				
\sqrt{s}	$240{ m GeV}$	$240{\rm GeV} \qquad 365{\rm GeV}$		GeV	$250{ m GeV}$	$350{ m GeV}$		$500{ m GeV}$	
$\int \mathcal{L} dt$	5.6 ab^{-1}	5 ab^{-1}	$1.5 {\rm ~ab^{-1}}$		2 ab^{-1}	$200 {\rm ~fb^{-1}}$		4 ab^{-1}	
production	Zh	Zh	Zh	$ u \bar{ u} h$	Zh	Zh	$ u \overline{ u} h$	Zh	$ u \overline{ u} h$
$\Delta\sigma/\sigma$	0.5%	0.5%	0.9%	_	0.71%	2.0%	_	1.05	—
decay	$\Delta(\sigma \cdot BR)/(\sigma \cdot BR)$								
$h \rightarrow b\bar{b}$ (0.27%	0.3%	0.5%	0.9%	0.46%	1.7%	2.0%	0.63%	0.23%
$h \to c\bar{c}$	3.3%	2.2%	6.5%	10%	2.9%	12.3%	21.2%	4.5%	2.2%
$h \rightarrow gg$	1.3%	1.9%	3.5%	4.5%	2.5%	9.4%	8.6%	3.8%	1.5%
$h \to WW^*$	1.0%	1.2%	2.6%	3.0%	1.6%	6.3%	6.4%	1.9%	0.85%
$h \to \tau^+ \tau^-$	0.8%	0.9%	1.8%	8.0%	1.1%	4.5%	17.9%	1.5%	2.5%
$h \rightarrow ZZ^*$	5.1%	4.4%	12%	10%	6.4%	28.0%	22.4%	8.8%	3.0%
$h \rightarrow \gamma \gamma$	6.8%	9.0%	18%	22%	12.0%	43.6%	50.3%	12.0%	6.8%
$h \rightarrow \mu^+ \mu^-$	17%	19%	40%	_	25.5%	97.3%	178.9%	30.0%	25.0%
$(\nu\bar{\nu})h \to b\bar{b}$	2.8%	3.1%	_	_	3.7%	_	_	_	_

Precision Measurements @ Higgs Factory

CEPC, 1810.09037

S. Su

EFT Description

$$\mathcal{L}_{\text{Eff}} = \mathcal{L}_{\text{SM}} + \sum_{i} \frac{C_i^{(6)} O_i^{(6)}}{\Lambda^2} + \mathcal{O}(\Lambda^{-4})$$

فككو

- \bullet EFT: Operators with coefficient suppressed by NP scale \varLambda
- standard tool to study large exp data set
- correlate Higgs, top, & sector
- model independent
- caveat... See Tim Cohen talk @ Higgs 2021

tree-level: \sim 17 operators

HL-LHC/Higgs factory

Blas et. al., 907.04311

Higgs@FC WG September 2019

New Physics Implication

MSSM: m_A vs. tan β

H. Li, SS, W. Su, J. Yang, 2010.09782

Tree-level 2HDM fit

2HDM, LHC/CEPC fit

S. Su

J. Gu, H. Li, Z. Liu, SS, W. Su, 1709.06103

Distinguish different types of 2HDMs

T. Han, S. Li, SS, W. Su, Y. Wu, 2008.05492

S. Su

27

Conclusion

- The discovery of Higgs is a remarkable triumph in particle physics
- A light weakly coupled Higgs argues for new physics beyond SM
- Search for new physics calls for both high precision machine and high energy machine
- LHC Run II and beyond
 - Higgs precision measurements: mass, width, couplings, CP,...
- Future Higgs factories: FCC-ee, CEPC, ILC/CLIC...
 - Higgs coupling to sub-percent level
 - Higgs self-coupling 10% @ ILC, CLIC
- Implication: model independent (kappa, EFT), model dependent
- Higgs precision measurements complementary to direct search/Z pole precision