New Physics with Gravitational Waves

James Dent Sam Houston State University

June 10, 2022

Masses in the Stellar Graveyard

LIGO-Virgo-KAGRA Black Holes LIGO-Virgo-KAGRA Neutron Stars EM Black Holes EM Neutron Stars

LIGO-Virgo-KAGRA | Aaron Geller | Northwestern

Observational Landscape

Observational Landscape

Observational Landscape - future

Concepts and status of Chinese space gravitational wave detection projects

Yungui Gong (Hua-Zhong U. Sci. Tech.), Jun Luo (Zhongshan U., Zhuhai and Hua-Zhong U. Sci. Tech.), Bin Wang (Shanghai Jiao Tong U. and Yangzhou U.) (Sep 15, 2021)

Published in: Nature Astron. 5 (2021) 9, 881-889 • e-Print: 2109.07442 [astro-ph.IM]

Observational Landscape - future

S.W.Ballmer, R.Adhikari, L.Badurina, D.A.Brown, S.Chattopadhyay, 2022 Snowmass Summer Study, arXiv:2203.08228

Observational Landscape

C.J.Moore, R.H. Cole, and C.P.L.Berry, Class.Quant.Grav. (2015), 1408.0740, http://gwplotter.com/

Observational Landscape

C.J.Moore, R.H. Cole, and C.P.L.Berry, Class.Quant.Grav. (2015), 1408.0740, http://gwplotter.com/

Universe

of the Visible

Radius

History of the Universe

probe early universe/high energies

Particle Dark Matter

ECOs

Defects

Particle Dark Matter

Particle Dark Matter

Primordial Black Holes

Primordial Black Holes

Y.B.Zel'dovich and I.D.Novikov, Soviet Astronomy 10 (1967)
S.Hawking, Mon.Not.Roy.Astron.Soc. 152 (1971)
B.J.Carr and S.W.Hawking, Mon.Not.Roy.Soc. 168 (1974),
B.J.Carr, Astrophys.J. 201 (1975)

D.S. Akerib et al., 2203.08084

Fermi-LAT, M.Ackermann, 1704.03910

PBH – DM mass fraction

G.Franciolini, A.Maharana, and F.Muia, 2205.02153, based on B.Carr, K.Kohri, Y.Sendouda, and J.Yokoyama, Rept.Prog.Phys. (2021), 2002.12778.

PBH – DM mass fraction

G.Franciolini, A.Maharana, and F.Muia, 2205.02153, based on B.Carr, K.Kohri, Y.Sendouda, and J.Yokoyama, Rept.Prog.Phys. (2021), 2002.12778.

Monochromatic
$$\psi_{\rm mon}(M) \equiv f_{\rm PBH}(M_c)\delta(M-M_c)$$

lognormal
$$\psi(M) = \frac{f_{\text{PBH}}}{\sqrt{2\pi} \sigma M} \exp\left(-\frac{\log^2(M/M_c)}{2\sigma^2}\right)$$

Power law

 $\psi(M) \propto M^{\gamma-1}$

B.J.Carr, K.Kohri, Y.Sendouda, and J.Yokoyama, 0912.5297, B.J.Carr, M.Raidal, T.Tenkanen, V.Vaskonen, and H.Veermae, 1705.05567.

Monochromatic
$$\psi_{\rm mon}(M) \equiv f_{\rm PBH}(M_c)\delta(M-M_c)$$

lognormal
$$\psi(M) = \frac{f_{\text{PBH}}}{\sqrt{2\pi} \sigma M} \exp\left(-\frac{\log^2(M/M_c)}{2\sigma^2}\right)$$

Power law

 $\psi(M) \propto M^{\gamma-1}$

See talk by Volodymyr Takhistov

 \bullet \bullet \bullet

B.J.Carr, K.Kohri, Y.Sendouda, and J.Yokoyama, 0912.5297, B.J.Carr, M.Raidal, T.Tenkanen, V.Vaskonen, and H.Veermae, 1705.05567.

PBH – binary formation

Decouple from Hubble flow at some xcrit Early: Three body – 2binary, 1 to torque produce binary orbits

T.Nakamura, M.Sasaki, T.Tanaka, and K.S.Thorne, astro-ph/9708060, S.Bird, I.Cholis, J.B. Muñoz, Y. Ali-Haïmoud, E.D.Kovetz, A.Raccanelli, A.G.Riess, and M.Kamionkowski, 1603.00464, M.Raidal, V.Vaskonen, and H.Veermäe, 1707.01480, Z.-C.Chen and Q.-G.Huang, 1801.10327, K.Jedamzik, 2006.11172, ...

PBH – binary formation

Decouple from Hubble flow at some xcrit Early: Three body – 2binary, 1 to torque produce binary orbits

T.Nakamura, M.Sasaki, T.Tanaka, and K.S.Thorne, astro-ph/9708060, S.Bird, I.Cholis, J.B. Muñoz, Y. Ali-Haïmoud, E.D.Kovetz, A.Raccanelli, A.G.Riess, and M.Kamionkowski, 1603.00464, M.Raidal, V.Vaskonen, and H.Veermäe, 1707.01480, Z.-C.Chen and Q.-G.Huang, 1801.10327, K.Jedamzik, 2006.11172, ...

PBH – sub-solar mass merger

A possible signal of PHBs would be the detection of a merger with at least one compact sub-solar mass in the binary

LIGO, VIRGO, and KAGRA, R.Abbott et al., 2109.12197

Since PHB are formed from large density fluctuations, there exists an irreducible tensor mode induced by the scalar fluctuations at second order

$$\mathrm{d}s^2 = a(\eta)^2 \left[-e^{2\Phi} \mathrm{d}\eta^2 + e^{-2\Psi} (\delta_{ij} + h_{ij}) \mathrm{d}x^i \mathrm{d}x^j \right]$$

$$h_j^{i''} + 2\mathcal{H}h_j^{i'} - \partial^2 h_j^i = 2\mathcal{P}_{rj}^{is} S_s^r$$

$$S_s^r = -2\Psi \partial_r \partial_s \Psi + \frac{4}{3(1+w)} \partial^r (\Psi + \mathcal{H}^{-1} \Psi') \partial_s (\Psi + \mathcal{H}^{-1} \Psi')$$

$$\mathcal{P}_h \sim \int \mathrm{d}k \int \mathrm{d}k' \left(\int \mathrm{d}t f(k,k',t) \right)^2 \mathcal{P}_{\zeta}(k) \mathcal{P}_{\zeta}(k')$$

K. Tomita. Non-linear theory of gravitational instability in an expanding universe. Prog. Theor. Phys. 37, 831 (1967), K.N.Ananda, C.Clarkson, and D.Wands, gr-qc/0612013, D.Baumann, P.J.Steinhardt, K.Takahashi, and K.Ichiki, hep-th/0703290, R.Saito and J.Yokoyama, 0812.4339, K.Kohri and T.Terada, 1804.08577,

Since PHB are formed from large density fluctuations, there exists an irreducible tensor mode induced by the scalar fluctuations at second order

$$\mathrm{d}s^2 = a(\eta)^2 \left[-e^{2\Phi} \mathrm{d}\eta^2 + e^{-2\Psi} (\delta_{ij} + h_{ij}) \mathrm{d}x^i \mathrm{d}x^j \right]$$

$$h_j^{i''} + 2\mathcal{H}h_j^{i'} - \partial^2 h_j^i = 2\mathcal{P}_{rj}^{is}S_s^r$$

$$S_s^r = -2\Psi \partial_r \partial_s \Psi + \frac{4}{3(1+w)} \partial^r (\Psi + \mathcal{H}^{-1} \Psi') \partial_s (\Psi + \mathcal{H}^{-1} \Psi')$$

$$\mathcal{P}_h \sim \int \mathrm{d}k \int \mathrm{d}k' \left(\int \mathrm{d}t f(k,k',t) \right)^2 \mathcal{P}_{\zeta}(k) \mathcal{P}_{\zeta}(k')$$

K. Tomita. Non-linear theory of gravitational instability in an expanding universe. Prog. Theor. Phys. 37, 831 (1967), K.N.Ananda, C.Clarkson, and D.Wands, gr-qc/0612013, D.Baumann, P.J.Steinhardt, K.Takahashi, and K.Ichiki, hep-th/0703290, R.Saito and J.Yokoyama, 0812.4339, K.Kohri and T.Terada, 1804.08577,

Since PHB are formed from large density fluctuations, there exists an irreducible tensor mode induced by the scalar fluctuations at second order

$$\mathrm{d}s^2 = a(\eta)^2 \left[-e^{2\Phi} \mathrm{d}\eta^2 + e^{-2\Psi} (\delta_{ij} + h_{ij}) \mathrm{d}x^i \mathrm{d}x^j \right]$$

$$h_j^{i''} + 2\mathcal{H}h_j^{i'} - \partial^2 h_j^i = 2\mathcal{P}_{rj}^{is} S_s^r$$

See talk by Keisuke Inomata

$$S_s^r = -2\Psi \partial_r \partial_s \Psi + \frac{4}{3(1+w)} \partial^r (\Psi + \mathcal{H}^{-1} \Psi') \partial_s (\Psi + \mathcal{H}^{-1} \Psi')$$

$$\mathcal{P}_h \sim \int \mathrm{d}k \int \mathrm{d}k' \left(\int \mathrm{d}t f(k,k',t) \right)^2 \frac{\mathcal{P}_{\zeta}(k)\mathcal{P}_{\zeta}(k')}{\mathcal{P}_{\zeta}(k)\mathcal{P}_{\zeta}(k')}$$

K. Tomita. Non-linear theory of gravitational instability in an expanding universe. Prog. Theor. Phys. 37, 831 (1967), K.N.Ananda, C.Clarkson, and D.Wands, gr-qc/0612013, D.Baumann, P.J.Steinhardt, K.Takahashi, and K.Ichiki, hep-th/0703290, R.Saito and J.Yokoyama, 0812.4339, K.Kohri and T.Terada, 1804.08577,

PBH-MeV Sky

A.Coogan, L.Morrison, and S.Profumo, 2010.04797 See also C.Keith, D.Hooper, T.Linden, and R.Liu, 2204.05337 $T_H = 1/(4\pi G_N M) \simeq 1.06(10^{16} \text{ g/M}) \text{ MeV}$

PBH – Scalar Induced GW – MeV Sky

K.Agashe, J.H.Chang, S.J.Clark, B.Dutta, Y.Tsai, and T.Xu, 2202.04653 See also: V. De Luca, G. Franciolini, and A. Riotto, 2009.08268

Ultralight Bosons and Gravitational Waves

Image from: A.Arvanitaki and S.Dubovsky, 1004.3558

Superradiance - mechanism

S.R.Dolan, PRD 76 (2007), R.Brito, V.Cardoso, and P.Pani, Lect.Notes Phys. (2015), 1501.06570.

Superradiance - mechanism

R.Penrose, *Riv.Nuovo Cim.* (1969), Y.B. Zel'dovich, *Pis'ma Zh. Eeksp. Teor. Fiz.* **14** [JETP Lett. **14** (1971)], W.H. Press and S.A. Teukolsky, *Nature* **238** (1972), S.L. Detweiler, PRD **22** (1980), S.R.Dolan, PRD **76** (2007), R.Brito, V.Cardoso, and P.Pani, *Lect.Notes Phys.* (2015), 1501.06570.

Superradiance

A.Arvanitaki, M.Baryakhtar, and X.Huang, 1411.2263

Superradiance

A.Arvanitaki, M.Baryakhtar, and X.Huang, 1411.2263

Superradiance – spin v. mass

R.Brito, S.Ghosh, E.Barausse, E.Berti, V.Cardoso, I.Dvorkin, A.Klein, and P.Pani, 1706.06311

Superradiance – time scales and frequency

The timescales for the superradiant instability

$$\tau_{\rm inst} \approx 27 \left(\frac{M_{\rm BH}}{10M_{\odot}}\right) \left(\frac{\alpha}{0.1}\right)^{-9} \left(\frac{1}{\chi_i}\right) \,{\rm days},$$

R.Brito, S.Ghosh, E.Barausse, E.Berti, V.Cardoso, I.Dvorkin, A.Klein, and P.Pani, 1706.06311

and for the gravitational wave emission are calculated

$$au_{\rm gw} \approx 6.5 \times 10^4 \left(\frac{M_{\rm BH}}{10 M_{\odot}}\right) \left(\frac{\alpha}{0.1}\right)^{-15} \left(\frac{1}{\chi_i}\right) \, {\rm years.}$$

$$\boxed{\tau_{inst} \ll \tau_{\rm gw}}$$

M.Isi, L.Sun, R.Brito, A.Melatos, 1810.03812

along with the frequency of GW emission

$$f_{\rm gw} \simeq 483\,{\rm Hz} \left(\frac{m_b}{10^{-12}\,{\rm eV}}\right) \left[1-7\times 10^{-4} \left(\frac{M_{\rm BH}}{10M_{\odot}}\frac{m_b}{10^{-12}\,{\rm eV}}\right)\right]$$

$$f_{\rm gw} \simeq \frac{\mu_b}{\pi}$$

C.Palomba, S.D'Antonio, P.Astone, S.Frasca, G.Intini, et al., 1909.08854

Superradiance

All-sky for quasi-monochromatic, long-duration from scalar boson clouds

$$h_0 \approx 6 \times 10^{-24} \left(\frac{M_{\rm BH}}{10 M_{\odot}}\right) \left(\frac{\alpha}{0.1}\right)^7 \left(\frac{1 \, \rm kpc}{D}\right) (\chi_i - \chi_c)$$

LIGO Scientific, Virgo, and KAGRA, R.Abbott et al., 2111.15507

SGWB search with O3

χ_i	$\log \mathcal{B}$	$m_s~({ m eV})$
Uniform[0,1]	-0.27	$[1.5, 16] imes 10^{-13}$
$\mathrm{Uniform}[0,0.5]$	-0.15	$[1.9, 8.3] imes 10^{-13}$
$\operatorname{Uniform}[0.5,1]$	-0.30	$[1.3, 17] \times 10^{-13}$

TABLE I. Results of Bayesian inference and exclusion intervals for the mass of boson at 95% credible level.

$$\Omega_{\rm GW}(f) \equiv \frac{1}{\rho_c} \frac{d\rho_{\rm GW}}{d\ln(f)}$$

C.Yuan, Y.Jiang, Q.-G.Huang, 2204.03482 - O3 search

C.Yuan, R. Brito, and V.Cardoso, 2106.00021 - SGWB predictions

Superradiance – further issues

Environmental effects (binaries) Resonances, multipole moments, etc.

D.Baumann, H.S.Chia, and R.A.Porto, 1804.03208

Self-interactions

$$\frac{g}{3!}\varphi^3 + \frac{\lambda}{4!}\varphi^4$$

M.Baryakhtar, M.Galanis, R.Lasenby, and O.Simon, 2011.11646

Other signals – (Lasing axions?)

T.W.Kephart and J.Rosa, 1709.06581

Uncertainties in mass-spin distributions

Phase Transitions

Phase Transitions

A.Kosowsky, M.S.Turner, and R.Watkins, PRL 1992, M.Kamionkowski, A.Kosowsky, and M.S.Turner, astro-ph/9310044, R.Apreda, M.Maggiore, A.Nicolis, and A.Riotto, gr-qc/0107033, C.Grojean and G.Servant, hep-ph/0607107

Phase Transitions

M.Laine, K.Rummukainen, hep-lat/9809045

Phase Transitions – GW production

Phase Transitions – GW production

Phase Transitions – GW production

C. Caprini et al., "Detecting gravitational waves from cosmological phase transitions from LISA: an update", 1910.13125

Phase Transitions – GW spectrum

$$h^{2}\Omega_{s}(f) = h^{2}\Omega_{s}^{\text{peak}}(\alpha, \beta/H_{*}, T_{*}, v_{w}, \kappa_{s}) \mathcal{S}_{s}(f, f_{s}) ,$$

M.Hindmarsh, S.J.Huber, K. Rummukainen, D.J. Weir, 1704.05871 .Cutting, M.Hindmarsh, and D.J.Weir, 1802.05712

$$\mathcal{S}_{\mathrm{s}} = \left(rac{f}{f_{\mathrm{s}}}
ight)^3 \left[rac{7}{4+3\left(f/f_{\mathrm{s}}
ight)^2}
ight]^{7/2}$$

$$h^2 \Omega_{\rm s}^{\rm peak} \simeq 2.65 \times 10^{-6} \left(\frac{v_w}{\beta/H_*}\right) \left(\frac{100}{g_*(T_*)}\right)^{1/3} \left(\frac{\kappa_{\rm s} \alpha}{1+\alpha}\right)^2$$

$$f_{\rm s} = 1.9 \times 10^{-2} \,\mathrm{mHz} \left(\frac{g_*(T_*)}{100}\right)^{1/6} \left(\frac{T_*}{100 \,\mathrm{GeV}}\right) \left(\frac{\beta/H_*}{v_w}\right)$$

Can produce GW in the region of LISA sensitivity

C. Caprini et al., 1910.13125

Nucleation rate per unit volume

$$\left[p(T) = p_0 T^4 e^{-S_3/T}\right]$$

The transition strength can be calculated

$$\alpha(T) = \frac{1}{\rho_{\rm rad}} \left(\Delta V_T - \frac{T}{4} \frac{d\Delta V_T}{dT} \right)$$

From this, the amount of available energy that is converted into bubble kinetic energy can be calculated

$$K = \frac{\rho_{\rm fl}}{e_+} = \left(\frac{\Delta \bar{\theta}}{4e_+}\right) \kappa$$

ble $(e_{2}^{(q)}, e_{2}^{(q)})$

 $3 \alpha w_{-}$

For prob ~ O(1) nucleation of

a bubble per Hubble volume

Provides the transition rate

 $\frac{\beta}{H} = T \frac{d(S_3/2)}{dT}$

Bounce solution

$$\left(\frac{\partial^2 \phi}{\partial r^2} + \frac{2}{r} \frac{\partial \phi}{\partial r} = \frac{\partial V_E(T,\phi)}{\partial \phi}\right)$$

 $\underbrace{\frac{S_3(T_n)}{T_n} \simeq 140}$

Assuming radiation domination

There is a suppression of the signal due to the source lifetime

$$\Upsilon = 1 - \frac{1}{\sqrt{1 - 2\tau_{\rm sw}H_s}}$$
$$\tau_{\rm sw} = R_*/\bar{U}_f$$

Energy budget refs: J.R.Espinosa,T.Konstandin,J.M.No,G.Servant, JCAP 2010, 1004.4187 L.Leitao and A.Megevand,1410.3875, F.Giese, T.Konstandin, J. van de Vis, 2004.06995 F.Giese, T.Konstandin, K.Schmitz, J. van de Vis, 2010.09744

Nucleation rate per unit volume

$$\left[p(T) = p_0 T^4 e^{-S_3/T}\right]$$

The transition strength can be calculated

$$\alpha(T) = \frac{1}{\rho_{\rm rad}} \left(\Delta V_T - \frac{T}{4} \frac{d\Delta V_T}{dT} \right)$$

From this, the amount of available energy that is converted into bubble kinetic energy can be calculated

$$K = \frac{\rho_{\rm fl}}{e_+} = \left(\frac{\Delta \bar{\theta}}{4e_+}\right) \kappa$$

$$\kappa = \frac{4\rho_{\rm fl}}{3\alpha w_+}$$

 $\left(\alpha_{\bar{\theta}n},c_{s,s}^{2},c_{s,b}^{2}\right)$

0.01

0.2

0.4

0.6

0.8

1.0

Provides the transition rate

$$\boxed{\frac{\beta}{H} = T \frac{d(S_3/T)}{dT}}$$

Bounce solution

$$\left(\frac{\partial^2 \phi}{\partial r^2} + \frac{2}{r} \frac{\partial \phi}{\partial r} = \frac{\partial V_E(T,\phi)}{\partial \phi}\right)$$

For prob ~ O(1) nucleation of a bubble per Hubble volume

Assuming radiation domination

There is a suppression of the signal due to the source lifetime

$$\Upsilon = 1 - \frac{1}{\sqrt{1 - 2\tau_{\rm sw}H_s}}$$

$$\tau_{\rm sw} = R_*/\bar{U}_f$$

Wall speed refs: S.Höche, J.Kozaczuk, A.J.Long, J.Turner, and Y.Wang, 2007.10343 B.Laurent and J.M.Cline 2204.13120 M.B.Hindmarsh, M.Luben, J.Lumma, and M.Pauly, *SciPost Phys.Lect.Notes* (2021), 2008.09136

Phase Transitions – Model Classes

Broadly: i) EWPT affected ii) not affected

- i) xSM, EW Multiplets, 2HDM, SUSY, SMEFT
- ii) Dark sector, Warped ExDim, Conformal

See talk by Arnab Dasgupta

Dat

Wall velocity $v_{\rm w}$:	0.9		
Phase transition strength α_{0} :	0 1		
Inverse phase transition duration β/U :	1 1		
inverse phase transition duration p/m_* :	Deissee Dessisseerete l		
Mission profile:	Science Requirements Document (3 years) \sim		
	· · · · · · · · · · · · · · · · · · ·	(-)	
. Transition temperature T_\star :	50	GeV	
Transition temperature T_\star : Degrees of freedom g_\star :	50 100	GeV	

C. Caprini et al., JCAP (2020) 1910.13125

Phase Transitions – singlet scalar xSM

$$V(H,S) = -\mu^2 |H|^2 + \lambda |H|^4 + \frac{1}{2}a_1 |H|^2 S + \frac{1}{2}a_2 |H|^2 S^2 + b_1 S + \frac{1}{2}b_2 S^2 + \frac{1}{3}b_3 S^3 + \frac{1}{4}b_4 S^4.$$

$$m_2 = 170 \text{ GeV and } 240 \text{ GeV}$$

$$v_w = 1$$

C. Caprini et al., JCAP (2020) 1910.13125

Model PISCs

3720 Benchmark Points - 10 LISA models using a general broken power law

$$\begin{split} \mathcal{S}(x) &= \frac{1}{\mathcal{N}} \, \widetilde{\mathcal{S}}(x) \,, \quad \widetilde{\mathcal{S}}(x) = \frac{x^p}{\left[q/\left(p+q \right) + p/\left(p+q \right) x^n \right]^{(p+q)/n}} \\ \Omega_{\text{tot}} &= \min\left\{ 1, H_* \tau_{\text{sh}} \right\} \times 3 \, \left(\frac{g_{\rho}^*}{g_{\rho}^0} \right) \left(\frac{g_s^0}{g_s^*} \right)^{4/3} \Omega_{\gamma}^0 \, \widetilde{\Omega} \, (8\pi)^{1/3} \, \frac{\max\left\{ c_s, v_w \right\}}{\beta/H_*} \, K^2 \\ f_{\text{peak}} &\simeq 8.9 \times 10^{-3} \, \text{mHz} \left(\frac{z_{\text{peak}}}{10} \right) \left(\frac{\beta/H_*}{\max\left\{ c_s, v_w \right\}} \right) \left(\frac{100}{g_s^*} \right)^{1/3} \left(\frac{g_{\rho}^*}{100} \right)^{1/2} \left(\frac{T_*}{100 \, \text{GeV}} \right) \end{split}$$

T.Alanne, T.Hugle, M.Platscher, and K.Schmitz, 1909.11356 K.Schmitz, 2002.04615 and 2005.10789

Example Sensitivity to Dark Sector Scales

Thermal effective potential that is polynomial and renormalizable

$$V(T,\phi) = \Lambda^4 \left[\left(-\frac{1}{2} + c \left(\frac{T}{v} \right)^2 \right) \left(\frac{\phi}{v} \right)^2 + b \frac{T}{v} \left(\frac{\phi}{v} \right)^3 + \frac{1}{4} \left(\frac{\phi}{v} \right)^4 \right]$$

 $V(T=0,\phi)$ has a minimum at $\phi=\pm v$ with a mass of $m^2/v^2=2(\Lambda/v)^4$

Example Sensitivity to Dark Sector Scales

Thermal effective potential that is polynomial and renormalizable

$$V(T,\phi) = \Lambda^4 \left[\left(-\frac{1}{2} + c \left(\frac{T}{v} \right)^2 \right) \left(\frac{\phi}{v} \right)^2 + b \frac{T}{v} \left(\frac{\phi}{v} \right)^3 + \frac{1}{4} \left(\frac{\phi}{v} \right)^4 \right]$$

 $V(T=0,\phi)$ has a minimum at $\phi=\pm v$ with a mass of $m^2/v^2=2(\Lambda/v)^4$

Rescale the $\tilde{\phi} = \phi/v$ potential, the temperature, and $\tilde{T} = T/v$ the field $\tilde{V}(\tilde{T}, \tilde{\phi}) = \left(-\frac{1}{2} + c\tilde{T}^2\right)\tilde{\phi}^2 + b\tilde{T}\tilde{\phi}^3 + \frac{1}{4}\tilde{\phi}^4$

The bounce

analytic approximation

$$\frac{d^2\phi}{dr^2} + \frac{2}{r}\frac{\partial\phi}{\partial r} = \frac{\partial V_E(T,\phi)}{\partial\phi} \qquad \qquad \frac{S_E}{T} = \frac{4.85M^3}{E^2T^3} \left[1 + \frac{\alpha}{4}\left(1 + \frac{2.4}{1-\alpha} + \frac{0.26}{(1-\alpha)^2}\right)\right]$$

M.Dine, R.G.Leigh, P.Y.Huet, A.D.Linde, and D.A.Linde, PRD (1992), hep-ph/9203203

JBD, B.Dutta, S.Ghosh, J.Kumar, and J.Runburg, 2203.11736

Effective Potential

The criteria $\frac{\tilde{S}_E}{\tilde{T}_N} \sim 140 \left(\frac{\Lambda}{v}\right)$

$$\Big)^2$$
 allows the determination S_E and $ilde{T}_N$ for any $b,\,c\,$ and $\,\Lambda/v.$

And subsequently, we can calculate the rate and transition strength

Effective Potential

The criteria
$$\frac{\tilde{S}_E}{\tilde{T}_N} \sim 140 \left(\frac{\Lambda}{v}\right)^2$$
 allows the determination S_E and \tilde{T}_N for any b, c and Λ/v .

And subsequently, we can calculate the rate and transition strength

We scan over *b* and *c* ensuring:

1. Perturbativity 2.FOPT 3. nucleation rate exceeds Hubble rate.

JBD, B.Dutta, S.Ghosh, J.Kumar, and J.Runburg, 2203.11736

Effective Potential

The criteria
$$\frac{\tilde{S}_E}{\tilde{T}_N} \sim 140 \left(\frac{\Lambda}{v}\right)^2$$
 allows the determination S_E and \tilde{T}_N for any b, c and Λ/v .

And subsequently, we can calculate the rate and transition strength

We scan over *b* and *c* ensuring:

1. Perturbativity 2.FOPT 3. nucleation rate exceeds Hubble rate.

We then calculate the GW amplitude and peak f

$$h^{2}\Omega_{sw}^{max} = h^{2}\tilde{\Omega}_{sw}^{max}(b,c,\Lambda/v) \times \left(\frac{\Lambda}{v}\right)^{10+8n} \left(\frac{g_{*}}{100}\right)^{-5/3-2n} \left[1 - \frac{1}{\sqrt{1+2\tau_{sh}H_{s}}}\right]$$
$$f_{sw} = \tilde{f}_{sw}(b,c,\Lambda/v) \times \left(\frac{\Lambda}{v}\right)^{-2} \left(\frac{T_{N}}{100 \text{ GeV}}\right) \left(\frac{g_{*}}{100}\right)^{1/6}$$

JBD, B.Dutta, S.Ghosh, J.Kumar, and J.Runburg, 2203.11736

Detectability

Sensitivity to Dark Sector Scales

1. EPTA [133], 2. NANOGrav [134, 135], 3. Gaia [136], 4. SKA [137], 5. THEIA [138], 6. LISA [12, 139, 140], 7. Taiji [141], 8.TianQin [142], 9. ALIA [143], 10. BBO [144, 145], 11. DECIGO [146, 147], 12. aLIGO [148, 149], 13. A+ [150], 14. ET [151], 15. CE [152].

PBH and FOPT

J.-P.Hong, S.Jung, and K.-P. Xie, 2008.04430 K.Kawana, K.-P. Xie, 2106.00111

$$\mathcal{L} = -rac{1}{2}\partial_{\mu}\phi\partial^{\mu}\phi - U(\phi) + ar{\chi}i\partial\!\!\!/\chi - g_{\chi}\phiar{\chi}\chi$$

Superradiance and FOPT

P.B.Denton, H.Davoudiasl, J.Gehrlein, 2109.01678

FOPT - Uncertainties

Thermal Parameter uncertainties

Effect	Range of error (medium)	Range of error (low)	Type of error
Transition temperature	${\cal O}(10^{-4}-10^1)$	${\cal O}(10^{-1}-10^0)$	Random
Mean bubble separation	$\mathcal{O}(0-10^{-1})$	${\cal O}(10^{-1}-10^0)$	Suppression
Fluid velocity	${\cal O}(10^{-2}-10^0)$	${\cal O}(10^{-2}-10^0)$	Random
Finite lifetime	$\mathcal{O}(10^{-3} - 10^{-1})$	$\mathcal{O}(10^1-10^3)$	Enhancement
Vorticity effects	${\cal O}(10^{-1}-10^0)$	—	Random

Theory uncertainties

H.-K.Guo, K.Sinha, D.Vagie, and G.White, 2103.06993

D.Croon, O.Gould, P.Schicho, T.V.I. Tenkanen, and G.White, 2009.10080

Discussion

Particle Dark Matter

Inflation

New physics with neutron star mergers Talk by Steven Harris

.

Back-up Thermal parameters

Nucleation rate per unit volume

$$p(T) = p_0 T^4 e^{-S_3/T}$$

Provides the transition rate

$$\left(\frac{\beta}{H} = T \frac{d(S_3/T)}{dT}\right)$$

Bounce solution

$$\left(\frac{\partial^2 \phi}{\partial r^2} + \frac{2}{r} \frac{\partial \phi}{\partial r} = \frac{\partial V_E(T,\phi)}{\partial \phi}\right)$$

For prob $\sim O(1)$ nucleation of a bubble per Hubble volume

Assuming radiation domination

Nucleation rate per unit volume

$$\left(p(T) = p_0 T^4 e^{-S_3/T}\right)$$

Provides the transition rate

$$\left(\frac{\beta}{H} = T \frac{d(S_3/T)}{dT}\right)$$

For prob ~ O(1) nucleation of a bubble per Hubble volume

 $\frac{2}{r}\frac{\partial\phi}{\partial r} = \frac{\partial V_E(T,\phi)}{\partial\phi}$

Bounce solution

Assuming radiation domination

Percolation temperature $-T_*$ when a fraction 1/e of space remains in the false vacuum

$$\frac{S_3(T_n)}{T_n} \simeq 141 + \log\left(\frac{A}{T_n^4}\right) - 4\log\left(\frac{T_n}{100 \,\text{GeV}}\right) - \log\left(\frac{\beta/H}{100}\right)$$
$$\frac{S_3(T_n)}{T_*} \simeq 141 + \log\left(\frac{A}{T_*^4}\right) - 4\log\left(\frac{T_*}{100 \,\text{GeV}}\right) - 4\log\left(\frac{\beta/H}{100}\right) + 3\log v_w$$

Nucleation rate per unit volume

$$\left[p(T) = p_0 T^4 e^{-S_3/T}\right]$$

The transition strength can be calculated

$$\alpha(T) = \frac{1}{\rho_{\rm rad}} \left(\Delta V_T - \frac{T}{4} \frac{d\Delta V_T}{dT} \right)$$

Provides the transition rate

$$\left(\frac{\beta}{H} = T \frac{d(S_3/T)}{dT}\right)$$

Bounce solution

$$\left(\frac{\partial^2 \phi}{\partial r^2} + \frac{2}{r} \frac{\partial \phi}{\partial r} = \frac{\partial V_E(T,\phi)}{\partial \phi}\right)$$

For prob ~ O(1) nucleation of a bubble per Hubble volume

$$\underbrace{\frac{S_3(T_n)}{T_n} \simeq 140}$$

Assuming radiation domination

Nucleation rate per unit volume

$$\left[p(T) = p_0 T^4 e^{-S_3/T}\right]$$

The transition strength can be calculated

$$\left(\alpha(T) = \frac{1}{\rho_{\rm rad}} \left(\Delta V_T - \frac{T}{4} \frac{d\Delta V_T}{dT}\right)\right)$$

From this, the amount of available energy that is converted into bubble kinetic energy can be calculated

Provides the transition rate

$$\left(\frac{\beta}{H} = T \frac{d(S_3/T)}{dT}\right)$$

Bounce solution

$$\left(\frac{\partial^2 \phi}{\partial r^2} + \frac{2}{r} \frac{\partial \phi}{\partial r} = \frac{\partial V_E(T,\phi)}{\partial \phi}\right)$$

For prob ~ O(1) nucleation of a bubble per Hubble volume

Assuming radiation domination

Energy budget refs: J.R.Espinosa,T.Konstandin,J.M.No,G.Servant, JCAP 2010, 1004.4187 L.Leitao and A.Megevand,1410.3875, F.Giese, T.Konstandin, J. van de Vis, 2004.06995 F.Giese, T.Konstandin, K.Schmitz, J. van de Vis, 2010.09744

Nucleation rate per unit volume

$$\left[p(T) = p_0 T^4 e^{-S_3/T}\right]$$

The transition strength can be calculated

$$\left(\alpha(T) = \frac{1}{\rho_{\rm rad}} \left(\Delta V_T - \frac{T}{4} \frac{d\Delta V_T}{dT}\right)\right)$$

From this, the amount of available energy that is converted into bubble kinetic energy can be calculated

$$\left(K = \frac{\rho_{\rm fl}}{e_+} = \left(\frac{\Delta\bar{\theta}}{4e_+}\right)\kappa\right)$$

$$\kappa = \frac{4\rho_{\rm fl}}{3\alpha w_+}$$

Provides the transition rate

$$\underbrace{\frac{\beta}{H} = T \frac{d(S_3/T)}{dT}}_{dT}$$

Bounce solution

$$\left(\frac{\partial^2 \phi}{\partial r^2} + \frac{2}{r} \frac{\partial \phi}{\partial r} = \frac{\partial V_E(T,\phi)}{\partial \phi}\right)$$

For prob ~ O(1) nucleation of a bubble per Hubble volume

Assuming radiation domination

There is a suppression of the signal due to the source lifetime

$$\Upsilon = 1 - \frac{1}{\sqrt{1 - 2\tau_{\rm sw}H_s}}$$
$$\tau_{\rm sw} = R_*/\bar{U}_f$$

Wall speed refs: S.Höche, J.Kozaczuk, A.J.Long, J.Turner, and Y.Wang, 2007.10343 B.Laurent and J.M.Cline 2204.13120 M.B.Hindmarsh, M.Luben, J.Lumma, and M.Pauly, *SciPost Phys.Lect.Notes* (2021), 2008.09136

$$0.01$$
 0.01 0.01