ASPECTS OF FUTURE COLLIDERS

Tao Han University of Pittsburgh

PPC 2022 @ Washington University June 10, 2022

- HL LHC Leads the Way
- Future Collider Agora & Physics Reach
- Fermilab Site Fillers

COLLIDERS:

PRIMARY TOOLS AT THE ENERGY FRONTIER

Frank Zimmermann, Lepton-Photon Conf. 2022

- EWSB:
 - Higgs & extension
- Particle DM:
 WIMP & beyond
- Neutrino masses: Majorana & CPv
- Flavor & CPv Scale & symmetry
- BSM ...
- → Complementarity
 to Astro-physics
 & Cosmology

LHC ROCKS!

LHC: The energy frontier & precision frontier!

HIGH-LUMINOSITY LHC

HL-LHC

• Fully approved in 2016, technology available, construction well underway!

- Run 3 started: beams in April 22, 2022
- Stable beam collisions detected by ATLAS/CMS
 --- more excitement to come!

Sample physics reach projection @ HL-LHC

and plus much more ... HL-LHC: arXiv:1812.07831; 5 Christian Ohm, Lepton-Photon Conf. 2022

Beyond the LHC: Challenges for accelerator technology

- Reduce synchrotron radiation
- Strong bending magnetic field
- Increase accelerating gradient
- Rare beam particle production e⁺, muon ...
- Costs, sustainability / power consumption

DPF Community Planning Exercise https://snowmass21.org

Accelerator Frontier → Implementation Task Force

 Energy Frontier/Neutrino Frontier → Physics goals PLEASE join the community effort: July 17-26 <u>http://seattlesnowmass2021.net/registration</u>
 Early-bird deadline next Monday June 13th(midnight)!

FUTURE COLLIDERS AGORA8 Higgs/EW factories:17 HE Colliders:

Name	Details	Name	Details
		Cryo-Cooled Copper linac	e+e-, \sqrt{s} = 2 TeV, L= 4.5 ×10 ³⁴
		High Energy CLIC	e+e-, $\sqrt{s} = 1.5 - 3$ TeV, L= 5.9 $\times 10^{34}$
ConC	$e_{+}e_{-}\sqrt{s} = 0.24 \text{ TeV} = 3.0 \times 10^{34}$	High Energy ILC	e+e-, $\sqrt{s} = 1 - 3$ TeV
Серс	$e+e-$, $\sqrt{5} = 0.24$ lev, L= 3.0 × 10 ⁻⁴	FCC-hh	pp, $\sqrt{s} = 100$ TeV, L= 30 $\times 10^{34}$
CLIC (Higgs factory)	e+e-, \sqrt{s} = 0.38 TeV, L= 1.5 ×10 ³⁴	SPPC	pp, $\sqrt{s} = 75/150$ TeV, L= 10 $\times 10^{34}$
ERL ee collider	e+e-, $\sqrt{s} = 0.24$ TeV, L= 73 ×10 ³⁴	Collider-in-Sea	pp, $\sqrt{s} = 500$ TeV, L= 50 ×10 ³⁴
		LHeC	ep , $\sqrt{s} = 1.3$ TeV, L= 1 $\times 10^{34}$
FCC-ee	e+e-, \sqrt{s} = 0.24 TeV, L= 17 ×10 ³⁴	FCC-eh	ep , $\sqrt{s} = 3.5$ TeV, L= 1 $\times 10^{34}$
	X-ray FEL-based $\gamma\gamma$ collider	CEPC-SPPpC-eh	ep , $\sqrt{s} = 6$ TeV, L= 4.5 $\times 10^{33}$
gamma gamma		VHE-ep	$ep, \sqrt{s} = 9 \text{ TeV}$
ILC (Higgs factory)	e+e-, \sqrt{s} = 0.25 TeV, L= 1.4 ×10 ³⁴	MC – Proton Driver 1	$\mu\mu$, $\sqrt{s}=1.5$ TeV, L= 1 $ imes 10^{34}$
		MC – Proton Driver 2	$\mu\mu$, $\sqrt{s}=3$ TeV, L= 2 $ imes 10^{34}$
LHeC	$ep, \sqrt{s} = 1.3 \text{ TeV}, L= 0.1 \times 10^{34}$	MC – Proton Driver 3	$\mu\mu,\sqrt{s}=10-14$ TeV, L= 20 $\times10^{34}$
	$\mu\mu, \sqrt{s} = 0.13$ TeV, L= 0.01 $\times 10^{34}$	MC – Positron Driver	$\mu\mu,\sqrt{s}=10-14$ TeV, L= 20 $\times10^{34}$
IVIC (Higgs factory)		LWFA-LC (e+e- and $\gamma\gamma$)	Laser driven; e+e-, $\sqrt{s} = 1 - 30$ TeV
		PWFA-LC (e+e- and $\gamma\gamma$)	Beam driven; e+e-, $\sqrt{s} = 1 - 30$ TeV
		SWFA-LC 2/10/202	Structure wakefields; e+e-, $\sqrt{s} = 1 - 30$ TeV

FUTURE COLLIDERS UNDER DISCUSSIONS*

	Snowmass 2021 Energy Frontier Collider Study Scenarios					
	Collider	Type	\sqrt{s}	P [%]	Lint	
				${ m e}^-/e^+$	ab^{-1}	
	HL-LHC	pp	14 TeV		6	ĺ
	ILC	ee	250 GeV	$\pm 80 / \pm 30$	2	
			350 GeV	$\pm 80/\pm 30$	0.2	
			500 GeV	$\pm 80 / \pm 30$	4	
			1 TeV	$\pm 80/\pm 20$	8	
Himma	CLIC	ee	380 GeV	$\pm 80/0$	1	
Inggs			1.5 TeV	$\pm 80/0$	2.5	
C			3.0 TeV	$\pm 80/0$	5	
tactories						
	CEPC	ee	M_Z		16	
			$2M_W$		2.6	
			240 GeV		5.6	
	FCC-ee	ee	M_Z		150	
			$2M_W$		10	
			240 GeV		5	
			$2 M_{top}$		1.5	
	FCC-hb	DD	100 TeV		30	İ
		PP				
LI: al an an and	LHeC	ер	1.3 TeV		1	ł
nign energy	FCC-eh	ep	3.5 TeV		2	
		-P				
trontier	muon-collider (higgs)	μц	125 GeV		0.02	ł
	(00 /	· ·				
	High energy muon-collider	1111	3 TeV		1	İ
		PR	10 TeV		10	
			14 TeV		20	
			30 TeV		90	
			00 101			4

* Snowmass Energy Frontier: https://snowmass21.org

ILC (International Linear Collider) as a Higgs Factory & beyond Under serious consideration in Japan; Pre-lab proposed https://arxiv.org/abs/1901.09829, 2106.00602

Ecm = 250 GeV / 2 ab⁻¹/yr: a Higgs factory = 500 GeV / 4 ab⁻¹/yr: a top-quark factory = 1000 GeV / 8 ab⁻¹/yr: new particle threshold

Future Circular Collider (FCC): CERN CEPC/SppC: China

Arkani-Hamed, TH, Mangano, LT Wang, Phys. Rept. 1511.06495.

Muon Collider benchmark points:

• The Higgs factory:	Parameter	Units	Higgs
T	CoM Energy	TeV	0.126
$E_{cm} = m_H$	Avg. Luminosity	$10^{34} \text{cm}^{-2} \text{s}^{-1}$	0.008
$L \sim 4 \text{ fb}^{-1}/\text{yr}$	Beam Energy Spread	%	0.004
$\Lambda E \sim 5 MeV$	Higgs Production $/10^7$ sec		13'50
Cm CTTCT	Circumference	km	0.3
(Current Snowmass 20	021 point)		
 Multi-TeV colliders: 	Lumi-scaling scheme	e: σ <i>L</i> ~ cor	nst.
$L \gtrsim \frac{5 \text{ years}}{\text{time}}$	$\left(\frac{\sqrt{s_{\mu}}}{10 \mathrm{TeV}}\right)^2 2 \cdot 10^{35} \mathrm{cm}^{-2} \mathrm{s}^{-1}$	1 ab ⁻¹ /yr	
The re-	presentative choices:		
E _{cm} = 3, 6, 10, 14,	30 TeV; L =(3,T4v10)	120%)96 .alo35	i
International M <u>https://mu</u>	uon Collider Collabora oncollider.web.cern.cl	tion Minternational WON Collider Collaboration	
European Strategy, arXiv:1910	0.11775; arXiv:1901.06150; ar	Xiv:2007.15684	í.

12

TH, Ma, Xie, arXiv:2007.14300, The Muon Smasher's Guide, arxiv:2103.14043.

PHYSICS REACH (VERY SELECTIVE) Precision Higgs physics

If SM tested at Δk_λ < O(10%),
 then EW underwent a cross-over transition.
 C. Aime et al., Muon Collider Physics Summary: arXiv:2203.07256

DM Searches

The mass reach for minimal WIMP DM @ muC

Mass bound by thermal relic:

A 14-TeV muC fully covers the thermal target M ~ 3 TeV
More advantageous than hadron colliders i.e. FCC-hh

TH, Z. Liu, L.T. Wang, X. Wang: arXiv:2009.11287; 2203.07351

contours of the two different search strategies.

then, as a counter P to partners searches: The Higgs mass fine-tune: $\frac{\delta m_H}{m_H} \sim 1\% (1 \text{ TeV}/\Lambda)^2$

> FCC: Arkani-Hamed, TH, Mangano, LT Wang, 1511.06495; muC: The Muon Smasher's Guide, https://arxiv.org/abs/2103.14043

New Particle Searches

• F_{cc-hh} vs HL-LHC: 6x reach, which is comparable to a 10-TeV muC

C. Aime et al., Muon Collider Physics Summary: arXiv:2203.07256

e.g.: Heavy Higgs Boson Production @ muC

Discovery up to threshold $M_{\rm H} \sim E_{\rm cm}/2$ Radiative returns:

Discovery extended to M_H ~ E_{cm} TH, S. Li, S. Su, W. Su, Y. Wu, arXiv:2102.08386; TH, Z. Liu et al., arXiv:1408.5912.

RECAST: FUTURE COLLIDERS AGORA

	2020	2025	2030	2035	2040	2045
RHIC	AA, pA, pp					
EIC	TDR	Construction		20 GeV →	140 GeV	
LHeC	TDR	Construction	1.3	3 TeV		
(HL)-LHC		14 TeV				
CEPC	TDR C	onstruction	240 GeV	Z W		SppC
ILC	Pre-constr'n	Constructi	ion	250 GeV		500 GeV
CLIC	TDR, pre-constr	'n Con	struction	380 GeV		1.5 TeV
FCC-ee	TDR, pre-const	ruction	Construct	tion	Z W 240 G	eV → 350 GeV
HE-LHC	R&D, TDR, prototyping, pre-construction		Construct	Construction		
FCC-hh	R&D, TDR, prototyping, pre-construction		Construc	Construction		
Muon Collider	R&D, tests, TDR, prototyping, pre-construction		Con	Construction		
Plasma Coll.	R&D, feasibili	ty studies, tests,	TDR, prototypin	g, pre-construction	on Construc	ction 3 TeV

FIG. 42. Approximate technically limited timelines of future large colliding beam facilities.

V. Shiltsev & F. Zimmermann: arXiv:2003.09084

FERMILAB SITE FILLERS

Circumference ~16 km

Linear ~7 km

- 1. e+e- Site Filler, \sqrt{s} = 90-240 GeV
- 2. Muon Collider, $\sqrt{s} = 0.126 8$ (10) TeV
- 3. pp Site Filler Collider, $\sqrt{s} = 24-28$ TeV

- 1. C³ (Cool Copper Cavity) e+e- Collider, $\sqrt{s} = 90 500$ GeV
- 2. NC RF (CLIC-Klystron) e+e- Collider, $\sqrt{s} = 90 500$ GeV
- 3. SRF-Travelling Wave e+e- Linear Collider, $\sqrt{s} = 90 250$ GeV

P. Bhat et al., Snowmass White paper: arXiv:2203.08088

Future Collider "Decision Tree"

C. Aime et al., Muon Collider Physics Summary: arXiv:2203.07256 V. Shiltsev & F. Zimmermann: arXiv:2003.09084

Summary

- Colliders: indispensable to explore the energy frontier; complementary to other frontiers: flavor, neutrino, DM.
- LHC leads the way: $\lambda_{\text{HHH}} \sim 50\%$; $M_{\text{NP}} \sim O(1 \text{ TeV})$
- Higgs factory: Near future: ILC (240 GeV – 1 TeV) Future Lepton collider g~1%; λ_{HHH} < 10%; Br_{inv.} ~ 2%; Γ_{tot} < 6%
- Future Fcc-hh: new physics reach
 6x LHC reach: 10 30 TeV → fine-tune < 10⁻⁴
 WIPM DM mass ~ 1 5 TeV; λ_{HHH} < 10%
- HE muon collider: λ_{HHH} < 5%; M_{NP} ~ E_{cm}/2 E_{cm}.
 Much R&D needed, future colliders needed!
 Future is bright!