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• HL – LHC Leads the Way
• Future Collider Agora & Physics Reach
• Fermilab Site Fillers

Future Colliders



Colliders: 
Primary Tools at the Energy Frontier
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Hadron Colliders
Electron-Proton Colliders
Lepton Colliders
Heavy Ion Colliders

Frank Zimmermann, Lepton-Photon Conf. 2022

• EWSB:
Higgs & extension
• Particle DM:
WIMP & beyond
• Neutrino masses:
Majorana & CPv
• Flavor & CPv
Scale & symmetry
• BSM … 

gluon

W,Z

SM

QGP

top

Higgs

QCD

flavor

à Complementarity 
to Astro-physics 
& Cosmology
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LHC Rocks!

LHC: The energy frontier & precision frontier!

!pp ~ 1011 pb ~ (1 fm)2

!WW ~ (10-13 nm)2

à

SM works at O(TeV) or 10-9 nm
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High-Luminosity LHC

We are here

• Run 3 started: beams in April 22, 2022
• Stable beam collisions detected by ATLAS/CMS
--- more excitement to come!
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HL-LHC: arXiv:1812.07831; 
Christian Ohm, Lepton-Photon Conf. 2022

Sample physics reach projection @ HL-LHC

Higgs coupling
target:

(v/Λ)2 < 6%

Self-coupling
target:

Δkλ ~ 10%
for testing EWPT

and plus much more …
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Beyond the LHC:
Challenges for accelerator technology 
• Reduce synchrotron radiation
• Strong bending magnetic field
• Increase accelerating gradient 
• Rare beam particle production e+, muon …
• Costs, sustainability / power consumption 

https://snowmass21.org
• Accelerator Frontier à Implementation Task Force
• Energy Frontier/Neutrino Frontier à Physics goals 

PLEASE join the community effort: July 17-26
http://seattlesnowmass2021.net/registration

Early-bird deadline next Monday June 13th(midnight)!

http://seattlesnowmass2021.net/registration


8 Higgs/EW factories:             17 HE Colliders:
Future Colliders Agora



* Snowmass Energy Frontier:  https://snowmass21.org 
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Future Colliders under Discussions*

Higgs 
factories

High energy
frontier



ILC (International Linear Collider) 
as a Higgs Factory & beyond

Ecm = 250 GeV / 2 ab-1 /yr: a Higgs factory
= 500 GeV / 4 ab-1 /yr: a top-quark factory
= 1000 GeV / 8 ab-1 /yr: new particle threshold

Under serious consideration in Japan; Pre-lab proposed
https://arxiv.org/abs/1901.09829, 2106.00602
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https://arxiv.org/abs/1901.09829
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Future Circular Collider (FCC): CERN
CEPC/SppC: China

S. Su 11

HE-LHC 
27 km, 20T

33 TeV

 FCC-hh
80 /100 km, 16/20T 

100 TeV

FCC-ee
80/100 km

90 - 400 GeV

S. Su 11

HE-LHC 
27 km, 20T

33 TeV

 FCC-hh
80 /100 km, 16/20T 

100 TeV

FCC-ee
80/100 km

90 - 400 GeV

Open new energy frontier!

1012 Z; 106 Higgs bosons;
106 top quark pairs

https://arxiv.org/abs/1607.01831,  https://arxiv.org/abs/1606.00947; 
Arkani-Hamed, TH, Mangano, LT Wang, Phys. Rept. 1511.06495.

H

H

H ?
H

H

H

LHC 100 TeV pp

mass reach of new physics

https://arxiv.org/abs/1606.00947
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µ Collider
Proton Driver Acceleration Collider Ring

Accelerators:    
Linacs, RLA or FFAG, RCS

Cooling
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AccelerationLow EMmittance Muon 
Accelerator (LEMMA): 
1011 µ pairs/sec from 

e+e− interactions.  The small 
production emittance allows lower 
overall charge in the collider rings 
– hence, lower backgrounds in a 

collider detector and a higher 
potential CoM energy due to 

neutrino radiation.

J. P. Delahaye et al., arXiv:1901.06150

Muon Accelerator Program
map.fnal.gov

Low EMittance Muon Accelerator
web.infn.it/LEMMA

New results on µ cooling by MICE collaboration
Nature 508(2020)53
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6 / 38e+e- (at rest) à !+!- (at threshold)

Proton-Driver:

LEMMA:

J.P. Delahauge et al.,  arXiv:1901.06150

Recent technological breakthroughs:

45 GeV e+

e- at rest
!±
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Target Energy and Luminosity
arXiv:1901.06150 

Energy: 
For a striking Direct Exploration program, after HL-LHC*, energy should be 
close or above 10 TeV

At few TeV energy one can still exploit high partonic energy for a striking 
Indirect Exploration program, by High-Energy Precision

We can borrow CLIC physics case (see below)

*see arXiv:1910.11775 for HL-LHC and F.C. projections summary

Luminosity: 

Set by asking for 100K SM “hard” SM pair-production events.

Compatible with other projects (e.g. CLIC =   )

If much less, we could only bet on Direct Discoveries !

Could be reduced by running longer than 5yrs and > 1 I.P.

(3 TeV/10 TeV)2 6 ⋅ 1035

L ≳ 5 years
time

sμ

10 TeV

2

2 ⋅ 1035cm−2s−1

8

1 ab-1 /yr
Lumi-scaling scheme: ! L ~ const.

The representative choices: 
Ecm = 3, 6, 10, 14, 30 TeV; L = 1, 4, 10, 20, 90 ab-1

European Strategy, arXiv:1910.11775; arXiv:1901.06150; arXiv:2007.15684.
TH, Ma, Xie, arXiv:2007.14300, The Muon Smasher's Guide, arxiv:2103.14043.

Muon Collider benchmark points: 

• Multi-TeV colliders:

• The Higgs factory:

7

Table 1: Main parameters of the proton driver muon facilities

Parameter Units Higgs Multi-TeV

CoM Energy TeV 0.126 1.5 3.0 6.0

Avg. Luminosity 10
34
cm

�2
s
�1

0.008 1.25 4.4 12

Beam Energy Spread % 0.004 0.1 0.1 0.1

Higgs Production/107 sec 13’500 37’500 200’000 820’000
Circumference km 0.3 2.5 4.5 6

No. of IP’s 1 2 2 2

Repetition Rate Hz 15 15 12 6

�
⇤
x,y cm 1.7 1 0.5 0.25

No. muons/bunch 10
12

4 2 2 2

Norm. Trans. Emittance, "TN µm-rad 200 25 25 25

Norm. Long. Emittance, "LN µm-rad 1.5 70 70 70

Bunch Length, �S cm 6.3 1 0.5 0.2
Proton Driver Power MW 4 4 4 1.6

Wall Plug Power MW 200 216 230 270

A schematic layout of a proton driven muon collider facility is sketched in Figure 2. The main
parameters of the enabled facilities are summarized in Table 1.

The functional elements of the muon beam generation and acceleration systems are:

– a proton driver producing a high-power multi-GeV, multi-MW bunched H
�
beam,

– a buncher made of an accumulator and a compressor that forms intense and short proton bunches,
– a pion production target in a heavily shielded enclosure able to withstand the high proton beam

power, which is inserted in a high field solenoid to capture the pions and guide them into a decay
channel,

– a front-end made of a solenoid decay channel equipped with RF cavities that captures the muons
longitudinally into a bunch train, and then applies a time-dependent acceleration that increases the
energy of the slower (low-energy) bunches and decreases the energy of the faster (high-energy)
bunches,

– an “initial” cooling channel that uses a moderate amount of ionization cooling to reduce the 6D
phase space occupied by the beam by a factor of 50 (5 in each transverse plane and 2 in the
longitudinal plane), so that it fits within the acceptance of the first acceleration stage. For high
luminosity collider applications, further ionization cooling stages are necessary to reduce the 6D
phase space occupied by the beam by up to five orders of magnitude,

– the beam is then accelerated by a series of fast acceleration stages such as Recirculating Linacs
Accelerators (RLA) or Fixed Field Alternating Gradient (FFAG) and Rapid Cycling Synchrotron
(RCS) to take the muon beams to the relevant energy before injection in the muon collider Ring.

3.2.2 R&D
The MAP R&D program (2011-2018) addressed many issues toward technical and design feasibility of
a muon based neutrino factory or collider [19] . Significant R&D progress, also summarized in [1], was
achieved.
Operation of RF Cavities in High Magnetic Fields Accelerating gradients in excess of 50 MV/m in a
3 T magnetic field have been demonstrated in the FNAL MuCool Test Area (MTA).
Initial and 6D Ionization Cooling Designs and pioneering demonstration Concepts were developed for
Initial Cooling, and 6D Cooling with RF cavities operating in vacuum (VCC), including a variant on this
design where the cavities were filled with gas used as discrete absorber (hybrid scheme), and a Helical

6

Ecm =mH
L ~ 4 fb-1/yr
"Ecm ~ 5 MeV
(Current Snowmass 2021 point)

https://muoncollider.web.cern.ch

https://muoncollider.web.cern.ch/
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C. Aime et al., Muon Collider Physics Summary: arXiv:2203.07256

Precision Higgs physics
Physics Reach (very selective)

muC:

If SM tested at Δkλ < O(10%), 
then EW underwent a cross-over transition.



-

From LUX collaboration

DM Searches  

GeV low mass:
Direct Detection difficult;
Collider complementary

100 GeV or higher mass:
HE Colliders extend threshold

14
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The mass reach for minimal WIMP DM @ muC

TH, Z. Liu, L.T. Wang, X. Wang: arXiv:2009.11287; 2203.07351

• A 14-TeV muC fully covers the thermal target M ~ 3 TeV
• More advantageous than hadron colliders i.e. FCC-hh

with � / g4
e↵/M2

DM. This leads us to a limit on the dark matter mass of

MDM < 1.8 TeV

✓
g2
e↵

0.3

◆
. (18)

As has been long appreciated, it is quite remarkable that the TeV scale
emerges so naturally in this way, assuming dark matter couplings comparable
in strength to the electroweak gauge interactions. This gives a strong, direct
argument for new physics at the TeV scale, independent of any theoretical
notions of naturalness.

Compellingly, dark matter often falls out of theories of physics beyond
the SM without being put in by hand. Indeed, if the SM is augmented by
new physics, not even necessarily close to the weak scale, but far beneath
the GUT scale, the interactions with new states should respect baryon and
lepton number to a very high degree. Since all SM particles are neutral under
the discrete symmetry (�1)B+L+2S, any new particles that are odd under
this symmetry will be exactly stable. This is the reason for the ubiquitous
presence of dark matter candidates in BSM physics. It is thus quite plausible
that the dark matter is just one part of a more complete sector of TeV-
scale physics; this has long been a canonical expectation, with the dark
matter identified as e.g. the lightest neutralino in a theory with TeV-scale
supersymmetry. The dominant SUSY processes at hadron colliders are of
course the production of colored particles—the squarks and gluinos—which
then decay, often in a long cascade of processes, to SM particles and the
lightest supersymmetric particle (LSP), resulting in the well known missing
energy signals at hadron colliders. This indirect production of dark matter
dominates, by far, the direct production of dark matter particles through
electroweak processes.

However, as emphasized in our discussion of naturalness, it is also worth
preparing for the possibility of a much more sparse spectrum of new particles
at the TeV scale. Indeed, if the idea of naturalness fails even slightly, the
motivation for a very rich set of new states at the hundreds-of-GeV scale
evaporates, while the motivation for WIMP dark matter at the TeV scale
still remains. This is for instance part of the philosophy leading to models
of split SUSY: in the minimal incarnation, the scalars and the second Higgs
doublet of the MSSM are pushed to ⇠ 102

� 103 TeV, but the gauginos (and
perhaps the higgsinos) are much lighter, protected by an R-symmetry. The
scalars are not so heavy as to obviate the need for R-parity, so the LSP is

40

Mass bound 
by thermal relic:

muC:



Pushing the “Naturalness” limit

Top quark partners searches:
The Higgs mass fine-tune: δmH/mH ~ 1% (1 TeV/Λ)2

Thus, mstop > 8 TeV à 10-4 fine-tune!

24	

Pushing the “Naturalness” limit	

The Higgs mass fine-tune: δmH/mH ~ 1% (1 TeV/Λ)2	

Thus, mstop > 8 TeV à 10-4 fine-tune!	

Stop like T’ search at hadron collider

- Larger production rate than the stop. 

- Studied quite a bit back then, as a “counter 
example” of SUSY.
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Figure 2: Cross-sections at 14 TeV (left) and 100 TeV (right).

MT

M
A

H

10

5

1

0.1

FERMIONIC TOP PARTNER

400 600 800 1000 1200 1400

400

200

600

800

1000

1200

MT

M
A

H

10

5

1

0.1

1400400 600 800 1000 1200

400

200

600

800

1000

1200
SCALAR TOP PARTNER

Figure 3: Search significance as computed in [1] for fermions (left) and scalar (right).
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Figure 4: Ratio of scalar cross-section to fermion cross-section.
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Meade and Reece,  
Han, Mabhubani, Walker and LTW, etc 

Wednesday, April 23, 14

11

contours of the two di↵erent search strategies.

The searches proposed here also have good discriminating power away from the massless

neutralino limit. A 1.5 TeV stop could be discovered in the compressed region of parameter

space. It is possible to exclude neutralino masses up to 2 TeV in most of the parameter

space.

All of the results presented here have been obtained with very minimal cut-flows that do

not rely on b-tagging or jet substructure techniques. Additional refinements should increase

the search sensitivity, at the price of making assumptions on the future detector design.

FIG. 5: Projected discovery potential [left] and exclusion limits [right] for 3000 fb�1 of total
integrated luminosity. At each signal point, the significance is obtained by taking the smaller CLs

between the heavy stop and compressed spectra search strategies, and converting CLs to number
of �’s. The blue and black contours (dotted) are the expected (±1�) exclusions/discovery contours
using the heavy stop and compressed spectra searches.

D. Di↵erent Luminosities

An open question in the design for the 100 TeV proton-proton collider is the luminosity

that is necessary to take full advantage of the high center of mass energy. As cross sections fall

with increased center of mass energy, one should expect that higher energy colliders require

more integrated luminosity to fulfill their potential. The necessary luminosity typically

scales quadratically with the center of mass energy, meaning that one should expect that

the 100 TeV proton-proton collider would need roughly 50 times the luminosity of the LHC

at 14 TeV.

This section shows the scaling of our search strategy as a function of the number of

collected events. As the luminosity changes, we re-optimize the /ET cut. For integrated

T.Cohen et al.: 1406.4512 
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16

FCC-hh Muon collider

FCC: Arkani-Hamed, TH, Mangano, LT Wang, 1511.06495;
muC: The Muon Smasher's Guide, https://arxiv.org/abs/2103.14043

Top partner
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C. Aime et al., Muon Collider Physics Summary: arXiv:2203.07256

New Particle Searches 

• Fcc-hh vs HL-LHC:  6x reach, 
which is comparable to a 10-TeV muC

muC

Fcc-hh

HL-LHC
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e.g.: Heavy Higgs Boson Production @ muC
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Figure 3. Cross sections of µ+µ� ! H+H� (red), and HA (green) through µ+µ� annihilation (left
panel), and in addition and H±H/H±A (blue), HH/AA (purple), through VBF (right panel) in the
alignment limit cos(� � ↵) = 0 at di↵erent c.m. energy

p
s. We use solid, dashed and dotted line for

degenerate heavy Higgs masses m� = 1 TeV, 2 TeV and 5 TeV, respectively. The second y-axis on
the right shows the corresponding event yields for a 10 ab�1 integrated luminosity.

Figure 4. The Parton Luminosity at Q = 5TeV (Left) and Q =
p
ŝ/2 with ŝ = ⌧s (Right).

Higgs masses m�(= mH = mA = mH±) =1 TeV (solid curves), 2 TeV (dashed curves) and

5 TeV (dotted curves). Red and green curves are used for H+H� and HA productions.

The second y-axis on the right shows the corresponding event yields for a 10 ab�1 integrated

luminosity. We see the threshold behavior for a scalar pair production in a P-wave as � ⇠ �3,

with � =
q

1 � 4m2
H
/s. Well above the threshold, the cross sections asymptotically approach

� ⇠ ↵2/s, which is insensitive to the heavy Higgs mass. The excess of the H+H� production

cross section over that of HA is attributed to the �⇤-mediated process. The cross sections are

calculated using MadGraph5 V2.6.7 [23] with Initial State Radiation (ISR) accounted [24].
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Figure 17. Left panel shows the cross section of single heavy Higgs production through radiative
return for mH = 1, 2 and 15 TeV at tan� = 1. Solid curves are the convoluted cross section with ISR
spectrum, while the dashed curves are for µ+µ� ! H�. Right panel shows the tan� dependence of
the cross section for

p
s = 14 TeV and mH = 12 TeV.

The right panel of Fig. 17 shows the tan� dependence of the cross section for
p
s = 14

TeV and mH = 12 TeV. While the cross section at tan� = 1 is much smaller than the other

production channels we considered earlier, the cross section scales like tan2 � in Type-II/L,

which could be sizable at large tan�. It could even be the dominant production for heavy

Higgs in the large tan� region of Type-L, when pair production is kinematically forbidden

and quark associated productions are suppressed.

6 Summary

High energy muon colliders o↵ers new opportunity for the direct production of heavy particles.

In this paper, we study the discovery potential of the heavy Higgs bosons in Two-Higgs-

Doublet Models (2HDM) at a high-energy muon collider. Both pair production of non-

SM Higgses, and single non-SM Higgs production in association with pair of fermions are

analyzed, as well as radiative return production of single non-SM Higgs. We found that pair

productions are dominant below the
p
s/2 production threshold, while single non-SM Higgs

productions could be important for heavier masses, and in regions of tan� with Yukawa

coupling enhancement. Radiative return single production, in particular, could be important

in the large tan� region Type-L. We also compared the annihilation production versus the

VBF production, and found that VBF processes could be dominating at large center of mass

energy and low scalar masses. With appropriate cuts on the invariant mass, momentum, and

angle, the dominant SM backgrounds could be suppressed to a negligible level. SS: Check

this statement about the background.

We also access the discrimination power of muon colliders on di↵erent types of 2HDMs.

With the combination of both the productions and decays, we found that while it is challenge
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Radiative returns:
Discovery up to threshold MH ~ Ecm/2
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FIG. 1: Main production mechanisms of heavy Higgs boson H/A at lepton colliders.

Coupling  ⌘ g/gSM Type-II & lepton-specific Type-I & flipped

gHµ+µ� µ sin↵/ cos� cos↵/ sin�

gAµ+µ� µ tan� � cot�

gHZZ Z cos(� � ↵) cos(� � ↵)

gHAZ 1� 
2
Z sin(� � ↵) sin(� � ↵)

TABLE I: Parametrization and their 2HDM models correspondence.

In Sec. II A, we first present the radiative return production of heavy Higgs boson in µ
+
µ
� collision in detail. We

also consider the production l
+
l
� ! ZH and l

+
l
� ! AH (l = e, µ) in Sec. II B. To make the illustration more

concrete, we compare these production modes in Sec. II C in the framework of 2HDM. Because of the rather clean
experimental environment and the model-independent reconstruction of the Higgs signal events at lepton colliders,
we also study the sensitivity of the invisible decay from the radiative return process in Sec. III. Finally, we summarize
our results and conclude in Sec. IV.

II. PRODUCTION MECHANISMS

Perhaps the most useful feature of a muon collider is the potential to have s-channel resonant production of the
Higgs boson [6–8, 10, 22]. As has been already mentioned in the previous section, such a machine undoubtedly has its
merits in analyzing in detail the already discovered Higgs boson near 125 GeV. When it comes to identifying a heavier
additional (pseudo)scalar, however, we do not have any a priori knowledge about the mass, rendering the new particle
search rather di�cult. If one envisions a rather wide-ranged scanning, it would require to devote a large portion of
the design integrated luminosity [9, 10]. In this section, we discuss the three di↵erent production mechanisms for the
associated production of the heavy Higgs boson. Besides the “radiative return” as in Eq. (1), we also consider

µ
+
µ
� ! Z

⇤ ! ZH and HA. (2)

The relevant Feynman diagrams are all shown in Fig. 1.
We first parametrize the relevant heavy Higgs boson couplings as

Lint = �µ

mµ

v
Hµ̄µ+ iµ

mµ

v
Aµ̄�5µ+ Z

m
2
Z

v
HZ

µ
Zµ +

g

2 cos ✓W

q
(1� 

2
Z
)(H@

µ
A�A@

µ
H)Zµ. (3)

The two parameters µ and Z characterize the coupling strength with respect to the SM Higgs boson couplings to
µ
+
µ
� and ZZ. The coupling µ controls the heavy Higgs resonant production and the radiative return cross sections,

while Z controls the cross sections for ZH associated production and heavy Higgs pair HA production. We have
used µ as the common scale parameter for Yukawa couplings of both the CP-even H and the CP-odd A, although in
principle they could be di↵erent. For the HAZ coupling we have used the generic 2HDM relation: Z is proportional
to cos(� �↵) and the HAZ coupling is proportional to sin(� �↵).1 In the heavy Higgs decoupling limit of 2HDM at
large mA, Z ⌘ cos(� � ↵) ⇠ m

2
Z
/m

2
A

is highly suppressed and µ ⇡ tan� (� cot�) in Type-II [24, 25] and lepton-
specific [26–29] (Type-I [23, 24] and flipped [26–29]) 2HDM. Note that many SUSY models, including MSSM and

1 Customarily, tan� is the ratio of the two vev’s, and ↵ is the mixing angle of the two scalar states.
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Summary
• Colliders: indispensable to explore the energy frontier;
complementary to other frontiers: flavor, neutrino, DM.
• LHC leads the way: λHHH ~ 50% ;  MNP ~ O(1 TeV)
• Higgs factory:

Near future: ILC (240 GeV – 1 TeV)
Future Lepton collider g~1%; λHHH < 10%; Brinv. ~ 2%; Γtot < 6%

• Future Fcc-hh: new physics reach
6x LHC reach: 10 – 30 TeV à fine-tune < 10-4

WIPM DM mass ~ 1 – 5 TeV;  λHHH < 10%

22

• HE muon collider: λHHH < 5%; MNP ~ Ecm/2 - Ecm.

Much R&D needed, future colliders needed!
Future is bright!


