Implications of Observable Baryon-Number Violation

Susan Gardner

Department of Physics and Astronomy University of Kentucky Lexington, KY

Based on work in collaboration with Jeffrey Berryman (N3AS/UC Berkeley), Xinshuai Yan (U. Kentucky/CCNU, Wuhan), Mohammedreza Zakeri (U. Kentucky)

Talk on Tues.!

XV Conference on Interconnections between Particle Physics & Cosmology PPC 2022 June 6-10, 2022 — St. Louis, MO

Limits on Nucleon ($|\Delta B| = 1$) Partial Lifetimes 90% C.L. upper limits to non-invisible final states

 $au_{\rm BNV}$ [yr]

[compilation: Berryman, SG, & Zakeri, 2022]

Such processes may yet be seen* We consider other possibilities & probes.... *Talks by Murgui, Fileviez Perez, Mehmood

Why Study Baryon Number Violation?A key thread to interpreting known BSM physics!
SM BNV is invisible today!Three essential questions:Atoms
4.6%How is it that theDark
Matter

cosmic energy budget 24% in ordinary matter is so small?

And how is it that its content is overwhelmingly (not *anti-*)baryonic?

Finer First First

How does the neutrino get its mass? Their answers may be linked, and through observable BNV! Baryon Number Violation (BNV) Can be realized (& probed!) in different ways

- BNV can be **explicit**. $n\bar{n}$ oscillations; $nn \rightarrow \nu\nu$; $e^-p \rightarrow e^+\bar{p}$
- BNV can be **apparent** (entrained with dark sectors). $n \rightarrow \chi\gamma; n \rightarrow \chi\chi\chi; nn \rightarrow \chi\chi \dots$
- BNV can be **spontaneous**. massive mediator of gauged B or B - L or

Implications for origins of the BAU, neutrino mass.... Enter neutron stars — as a BNV laboratory!

Explicit BNV

Explicit BNV: $|\Delta B| = 2$ Processes

to explain the BAU

Need to explain BAU: enter $n\bar{n}$ oscillations! [Kuzmin, 1970] Various explicit models: note, e.g., Q-L unification: (Pati-Salam) $SU(2)_L \times SU(2)_R \times SU(4)_c$

[Mohapatra, Marshak, 1980]

The appearance of *nn* oscillations permits *post-sphaleron baryogenesis* [Babu, Mohapatra, Nasri, 2006]

Successful BAU: Note upper limit on $n\bar{n}$ oscillations!

[Babu, Dev, Mohapatra, 2009; Babu et al., 2013]

Context: Ον ββ Decay in Nuclei **Can be mediated by "short-" or "long"-range mechanisms** The "short-range" mechanism involves new B-L violating dynamics; e.g.,

S or V that carries B or L

For choices of fermions f_i this decay topology can yield **n-n** or $0v \beta\beta$ decay

[Bonnet, Hirsch, Ota, & Winter, 2013; Berezhiani, 2013]

The possibilities can be related in a data-driven way

[SG & Xinshuai Yan, 2019]

Cf. connection via I∆BI=1 process [Babu & Mohapatra, 2015]

Explicit BNV (& LNV)

patterns of observed violation implies a Majorana neutrino

"B-L" Triangle

[Babu & Mohapatra, 2015]

[SG & Xinshuai Yan, 2019]

Still Broader Possibilities

Different channels connected by vector addition

[Heeck & Takhistov, 2020]

[Note also Berryman, SG, Zakeri, 2022]

Modeling $|\Delta B| = 2$ Processes Enter minimal scalar models without proton decay [Arnold, Fornal, and Wise, 2013; Dev & Mohapatra, 2015; SG & Yan, 2019, 2020; Murgui & Wise, 2021] Already used for $n \to \bar{n}$ oscillation without p decay [Arnold, Fornal, Wise, 2013] Add new scalars X_i that do not give N decay at tree level Also choose X_i that respect SM gauge symmetry and also under interactions $X_i X_j X_k$ or $X_i X_j X_k X_l$ - cf. "hidden sector" searches: possible masses are limited by experiment With this a much richer set of B and L violating processes emerge!

Scalars without Proton Decay That also carry B or L charge Scalar-fermion couplings

$$Q_{em} = T_3 + Y$$

 $[g_i^{ab}?]$ Scalar SM Representation В L Operator(s)0 -2 Xe^ae^b [S] X_1 (1, 1, 2) $0 \quad -2 \quad XL^aL^b$ (1, 1, 1) X_2 [A] $0 \quad -2 \quad XL^aL^b$ X_3 (1,3,1) [S] $-2/3 \quad 0 \quad XQ^aQ^b$ X_4 ($\overline{6}, 3, -1/3$) [S]Note -2/3 0 XQ^aQ^b, Xu^ad^b X_5 ($\overline{6}, 1, -1/3$) [A,-]SU(3) $-2/3 \quad 0 \quad X d^a d^b$ X_6 (3, 1, 2/3) [A]rep'ns $-2/3 \quad 0 \quad X d^a d^b$ X_7 ($\overline{6}, 1, 2/3$) [S] $-2/3 \quad 0 \quad X u^a u^b$ $(\bar{6}, 1, -4/3)$ X_8 [S]1/3 -1 $X\bar{Q}^a e^b, XL^a \bar{u}^b$ (3, 2, 7/6) X_9 _,__ chiral $SU(3) \times SU(2)_L \times U(1)_V$ [?: a↔b symmetry] cf. n dark decay: (3,1, -1/3)

Phenomenology of New Scalars Constraints from many sources - Focus on first generation i) **n-n** (But some models do not produce it) ii) Collider constraints CMS: $\ell^+\ell^+$ search; cannot look at invariant masses below 8 GeV

[CMS 2012, 2014, 2016]

iii) (g-2)_e [Babu & Macesanu, 2003] [superseded by Møller expt, save for *light masses*] [SG & Xinshuai Yan, 2020] Use latest exp't! [Hanneke, Fogwell, Gabrielse, 2008] Limit: $M_1/g_1^{11} \ge 80 \text{ GeV}$ $M_{X_{1,3}}/g_{1,3}^{11} \ge 2.7 \text{ TeV} @ 90 \% \text{ CL}$ [E158] (if "heavy") iii) Nuclear stability

Patterns of $|\Delta B| = 2$ Violation Discovery implications for $0v \beta\beta$ decay

Model	$n\bar{n}?$	$e^-n \to e^-\bar{n}?$	$e^- p \to \bar{\nu}_X \bar{n}?$	$e^-p \to e^+\bar{p}?$	0 uetaeta ?
M3	Y	Ν	Ν	Y	Y[A]
M2	Y	Υ	Υ	Υ	Y [B]
M1	Y	Υ	Υ	Ν	? [D]
	Ν	Ν	Y	Y	? [C?]

Patterns of observation can distinguish the possibilities. $n\bar{n}$ limits are severe! $\tau_{n\bar{n}} > 2.7 \times 10^8$ s @ 90 % CL [SuperK: Abe et al., 2015]

Note "XXXX" processes can be studied at low E, high intensity e-facilities: e.g., Ariel @ TRIUMF (E = 15 MeV) Low E: prompt annihilation of \overline{N} ; low background!! [SG & Xinshuai Yan, 2018, 2019,...]

Apparent BNV

The Neutron Lifetime Puzzle A darkly provocative result?

[Note also Strumia, 2022]

Neutron Stars to Limit BNV*

Assumptions for a model-independent analysis

$\Gamma_{\rm BNV} < < \Gamma_{\rm weak}$

SM processes continue to control the EOS, as the star adjusts to the presence of BNV

This can occur if any new final-state particles either annihilate or decay to particles already present in the star (plus ν 's & γ 's)

Outcome: inclusive limit on all BNV processes that can occur in the star!

Neutron Stars to Limit BNV

Use pulsar binary period decay rate...

- Double pulsar (PSR J0737-3039A/B)
- Hulse-Taylor binary (PSR B1913+16)
- White Dwarf-Neutron Star (PSR J1713+0747)

Name	J0737-3039A/B	B1913+16	J1713+0747
P_b (days)	0.1022515592973(10)	0.322997448918(3)	67.8251299228(5)
$\dot{P}_{b}^{\text{int}}(\times 10^{-12})$	-1.247752(79)	-2.398(4)	0.03(15)
$\dot{P}_{b}^{\text{GR}}(\times 10^{-12})$	-1.247827(+6, -7)	-2.40263(5)	$-6.3(6) imes 10^{-6}$
$(rac{\dot{P}_b}{P_b})^{\dot{\mathrm{E}}}_{2\sigma}(\mathrm{yr}^{-1})$	$8.3 imes 10^{-13}$	$1.4 imes 10^{-11}$	$1.8 imes10^{-12}$
$(rac{\dot{P}_b}{P_b})^{\dot{\Omega}}(\mathrm{yr}^{-1})$	$1.04(7) imes 10^{-13}$	$\lesssim 2.5 imes 10^{-13}$	$pprox 8 imes 10^{-14}$
$(rac{\dot{P}_b}{P_b})_{2\sigma}^{\mathrm{BNV}}(\mathrm{yr}^{-1})$	$7.3 imes 10^{-13}$	$1.4 imes10^{-11}$	$1.8 imes 10^{-12}$
$ \frac{\dot{B}}{B} _{2\sigma} (\mathrm{yr}^{-1})$	$3.7 imes 10^{-13}$	7×10^{-12}	$1.1 imes 10^{-12}$
•			1.0 1

 $\dot{B} = f \times B \times \Gamma_{BNV}$ $\Gamma_{BNV} < 4 \times 10^{-13} \, yr^{-1} \, [95 \% \, CL]$ f: fraction participating ₂₃ n; inclusive

Neutron Stars to Limit BNV

Use pulsar spin down rate...

- Pulsar-white dwarf binary PSR J0348+0432
- $M_p = 2.01 \pm 0.04 M_{\odot}$ (!)
- Assuming BNV is from a decay (note EOS choice)

$$\Gamma_n < 1.7 \times 10^{-9} \,\mathrm{yr}^{-1}$$

 $\Gamma_\Lambda < 2.8 \times 10^{-7} \,\mathrm{yr}^{-1}$
 $\Gamma_{\Sigma^-} < 6.5 \times 10^{-5} \,\mathrm{yr}^{-1}$

Much more severe than exclusive Λ dark decay limits from neutrino burst duration in SN 1987A! [Alonso-Alvarez et al., 2021 [2111.12712]] Comparative analysis ongoing

Broader Impacts

"Mesogenesis"

New dark sector fermion ψ_B with B = -1...

[Elor, Escudero, Nelson, 2019; Elor & McGehee, 2021;...]

Spontaneous BNV

A Surprise: GW190814A 2.6M_oobject – neutron star or black hole?

GWTC-2 plot v1.0 LIGO-Virgo | Frank Elavsky, Aaron Geller | Northwestern

https://ligo.northwestern.edu/media/mass-plot/index.html

New Short-Range Force?* E.g., a $U(1)_{\rm B}$ gauge boson B...

- Can be heavy ($\gtrsim 600\,MeV$) and not so weakly coupled with little impact on NN phenomenology
- •Generates a repulsive force between neutrons
- Need to work within non-relativistic many-body physics for connection to NN physics
- Can modify neutron star properties to yield a larger maximum neutron star mass

*Talk by Kim; note "vector portal" models

[Berryman & SG, 2021]

Neutron Star Structure with gauged $U(1)_{B_1}$

Summary

-New, possible avenues for B (& L) NV (by 2 units & more) have been largely overlooked

—These studies may provide new insights into the nature of the neutrino mass

-Light hidden sectors that could help mediate rare processes associated with dim ≥ 9 BNV operators are potentially discoverable in low E accelerator experiments

-Neutron stars contain $\sim 10^{57}$ baryons; energy loss constraints limit BNV rates under weak assumptions...(& more under development)

-Spontaneous BNV can modify the structure of neutron stars, making them heavier and "fatter"

Collaborators — Baryon Number Violation —

Jeff Berryman

M. Zakeri (Zaki)

Xinshuai Yan

Backup Slides

Neutron Star Schematic

The interior is not well-understood

33

Critical phenomena in **cold** QCD?

Observational studies illuminate structure & dynamics....

Dark Matter: Cosmic Probes Extreme Astrophysical Environments

Outcomes sensitive to dynamical details....

Broader Complementarities heavy-ion collisions

[Berryman, SG, & Zakeri, 2022]