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Origin of UHE Cosmic Rays

The universe creates extraordinarily 
energetic particles (protons, neutrons, etc.)

Where are they accelerated?

cosmic rays

gamma rays
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Origin of UHE Cosmic Rays

The universe creates extraordinarily 
energetic particles (protons, neutrons, etc.)

Where are they accelerated?
How are they accelerated to such 
tremendous energies?

cosmic rays
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Origin of UHE Cosmic Rays

The universe creates extraordinarily 
energetic particles (protons, neutrons, etc.)

Where are they accelerated?
How are they accelerated to such 
tremendous energies?

AGN? Mergers?

cosmic rays

gamma rays
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Light, neutral, and weakly 
interacting

Travel cosmic distances 
unattenuated and 
undeflected – great for 
astronomy!

NB: Not so weakly 
interacting at the highest 
energies…

Earth starts absorbing neutrinos 
above ~40 TeV.

Mean free path @ 1 EeV is ~40 km 
(in rock)

Formaggio & Zeller
Rev Mod Phys 84, 1307 (2012)
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Unambiguous proof of 
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Detected in 2012!
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Courtesy of Francis Halzen

Particle Physics
Probe cross-sections at energies 
above accelerators

These are the highest energy 
leptons ever observed!
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Extremely large volume
(1 to 103 km3)

of

Optically transparent 
medium

Antarctica
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IceCube
5160 photomultiplier 
tubes buried 2.5km in the 
ice near South Pole

PMT

Electronics
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Tracks Cascades Double cascades

𝜈! + 𝑁 → 𝜇 + 𝑋
(Mostly)

(simulation)
(data)

𝜈"/$ + 𝑁 → 𝑒/𝜏 + 𝑋
𝜈% + 𝑁 → 𝜈% + 𝑋

𝜈$ + 𝑁 → 𝜏 + 𝑋

𝜏 decay length is 50m/PeV

Unobserved, 
but searches ongoing!

Angular Resolution ~0.5o

Energy resolution: ~2x
Angular Resolution ~8o

Energy resolution: ~10%
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Northern Sky

Atmospheric Neutrinos
(Earth absorbs atm muons)

Southern Sky

Atmospheric Muons
+

Atmospheric Neutrinos

𝜈

𝜇

Astrophysics:
astrophysical 

neutrinos arriving 
isotropically

Atmospherics

Atmospheric 𝜇: 2 khz
Atmospheric 𝜈: 5 mHz
Astrophysical 𝜈: ~1 μHz

𝜈
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Upgoing Track Selection
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Selection of 650k upgoing and 
horizontal muon neut2.37±0.09

Updated w/
• 50% more data (6 → 9.5 yrs)
• Improved calibration & 

systematics treatment

Data consistent with single power 
law, fits w/ 𝛾 = 2.37 ± 0.09

ApJ 928 50, 2022
(arxiv 2111.10299)

https://arxiv.org/abs/2111.10299
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High Energy Starting Events

Selection of 60 starting events 
above 60 TeV

>2x as muc2.87±0.2
→7.5 yrs), updated detector & 
ice models, and systematics 
treatment

Data still consistent with single 
power law, fits w/ 𝛾 = 2.87 ± 0.2
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The Landscape Today

Several complementary 
measurements
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The Landscape Today

Several complementary 
measurements
• All consistent with SPL hypothesis
• Consistent w/ each other @ 2σ
• But different, and challenging, 

systematics

Global fit efforts are planned!
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Look for “double cascade” 
signature from initial interaction 
and later tau decay

Analysis of HESE event rejects 
no-tau hypothesis @ 2.8σ

Best-fit has all flavor 
components >0.
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A search for partially contained 
events identified a cascade 
with ~6 PeV of energy

Consistent with Glashow 
resonance: formation of on-
shell W-boson

First observation of this 
interaction, and a confirmed 
astrophysical 𝜈 𝑒

𝜈 𝑒 𝑒 𝑒 𝑒 𝜈 𝑒

Nature 591, 220-224 (2021)



| IceCube Physics Results | Brian Clark, June 9 2022 23



| IceCube Physics Results | Brian Clark, June 9 2022 23



Searching for Sources

| IceCube Physics Results | Brian Clark, June 9 2022 24

Time-Integrated Searches



Searching for Sources

| IceCube Physics Results | Brian Clark, June 9 2022 24

Time-Integrated Searches

Perform all-sky search for 
neutrino sources



Searching for Sources

| IceCube Physics Results | Brian Clark, June 9 2022 24

Time-Integrated Searches

Perform all-sky search for 
neutrino sources

No significant emission so far



Searching for Sources

| IceCube Physics Results | Brian Clark, June 9 2022 24

Time-Integrated Searches

Perform all-sky search for 
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Perform all-sky search for 
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No significant emission so far

But find 2.9σ (post-trials) 
hotspot observed on NGC 1068 
in a catalog search*

*110 sources chosen a priori based on gamma ray 
emission
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Correlations with Cosmic Rays

Cosmic-rays and neutrinos are 
suspected to have common origin →
search for correlations!

No significant correlations found

Not necessarily unexpected!
Good CR accelerators may be 
optically thin and therefore poor 
neutrino beam dumps

Cosmic rays: 

Neutrinos:

ApJ accepted
(arxiv 2201.07313)

https://arxiv.org/abs/2201.07313
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A sterile neutrino leads to a matter-
enhanced resonance, and near total 
disappearance of Earth-traversing 
few TeV neutrinos.

PRL 125, 141801 (2020)
(arxiv 2005.12942)

https://arxiv.org/abs/2005.12942
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Several experimental anomalies 
challenge the 3-flavor paradigm

Use upgoing tracks to look for a 
sterile neutrino at the eV-scale 
(3+1 model)

Result consistent with no-sterile 
hypothesis w/ p-value = 8%; 90% 
contour closes
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DM can be captured by the 
sun, thermalize, and 
annihilate to neutrinos

Use sample of low-energy 
(< 500 GeV) events to 
search for excess from the 
Sun

No observed excess → set 
world-leading constraint on 
5-100 GeV DM annihilation 
to neutrinos

FC: J. Lazar

PRD 105 062004 (2022)
arxiv 2111.09970

https://arxiv.org/abs/2111.09970
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The Future: IceCube-Gen2
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Four new elements

1. IceCube Upgrade
2. Enlarged deep optical array
3. Surface array extension
4. Shallow radio array

1
2

3
4
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IceCube-Gen2 Optical

| IceCube Physics Results | Brian Clark, June 9 2022 32

~10x the contained volume of IceCube

5x the effective area

2x the angular resolution (on tracks)

D-Egg mDOM

Features new pixelated 
module, based on 
development work in the 
IceCube Upgrade

+

Gen2 DOM

=
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Sensitive to sources 5x fainter than IceCube



Conclusions
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Neutrinos are unique messengers to the cosmos

Very exciting first decade w/ IceCube
• Discovery of high-energy neutrinos & 

identification of first potential sources
• Powerful probes of particle & neutrino physics
• World-leading sensitivity to BSM physics

Future is bright!

J. Phys. G. 48 (2021) 6, 060501
arXiv 2008.04323

The presenter acknowledges 
support from the NSF through 
award 1903885.

https://arxiv.org/abs/2008.04323


| IceCube Physics Results | Brian Clark, June 9 2022 35

Thank You!
Questions?

”Where the telescope ends, the 
microscope begins. Which of the 
two has the grander view?”

—Victor Hugo



Backup
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Ackerman et al. 1903.04333



| IceCube Physics Results | Brian Clark, June 9 2022 38

𝐸"#$ = 4 𝐸% 𝑚&



Particle Physics

| IceCube Physics Results | Brian Clark, June 9 2022 38

𝐸"#$ = 4 𝐸% 𝑚&



Particle Physics

| IceCube Physics Results | Brian Clark, June 9 2022 38

Probe cross-sections at energies above 
accelerators 𝐸"#$ = 4 𝐸% 𝑚&



Particle Physics

| IceCube Physics Results | Brian Clark, June 9 2022 38

Probe cross-sections at energies above 
accelerators

Ex: An EeV (1018 eV ) neutrino 
interacting in ice has COM energy of 
~60 TeV (note: LHC  14 TeV)

𝐸"#$ = 4 𝐸% 𝑚&



Particle Physics

| IceCube Physics Results | Brian Clark, June 9 2022 38

Probe cross-sections at energies above 
accelerators

Ex: An EeV (1018 eV ) neutrino 
interacting in ice has COM energy of 
~60 TeV (note: LHC  14 TeV)

These are the highest energy leptons 
ever observed!

𝐸"#$ = 4 𝐸% 𝑚&
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Pions from the GZK interaction further 
decay

Undetected. But! Shape encodes 
important astrophysics:
• Maximum accelerating energy
• Source redshift evolution
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Astro 2020 White Paper
“Fundamental physics with 
High-Energy Cosmic Neutrinos”
Ackerman et. al. 1903.04333
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M.A. Markov & I. M. Zheleznykh
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F-18 going Supersonic

Emitted at a characteristic angle (𝜃&),
and has a distinctive blue and UV glow
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First Neutrino Source (2017)

290 TeV neutrino observed in coincidence with 
flaring blazar (~3𝜎)

Archival search reveals additional 3.5𝜎 excess

Science Vol. 361, Issue 6398

Sep 22, 2017



Astrophysical Neutrino Searches
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For astrophysical neutrino searches, 
atmospherics are a background

One strategy: look for upgoing events

Uses the Earth as a shield to 
atmospheric muons

❌
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= 2.37 ± 0.09

ApJ 928 50, 2022
(arxiv 2111.10299)

https://arxiv.org/abs/2111.10299
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Upgoing Track Selection
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Softer, but still consistent with, 
previous results

2.37±0.09
Data still consistent with single power 
law, fits w/ 𝛾 = 2.37 ± 0.09

ApJ 928 50, 2022
(arxiv 2111.10299)

https://arxiv.org/abs/2111.10299
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Searching for Sources
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Correlations with Photon Catalogs

IceCube follows-up other 
messengers

Through AMON, sub-
threshold searches ongoing 
between HAWC and 
IceCube

Generic fast-response 
analysis tool for responding 
to the community

A HAWC-IceCube
coincidence; post-
trials  p-value ~7%.
ApJ 906 (2021) 63 
arxiv 2008.10616

IceCube follow up of 
FSRQ PKS 0346-27, 
observed in an 
enhanced flux state. 
p-value ~14.5%.
ApJ 910 (2021) 4 
arxiv 2012.04577

https://arxiv.org/abs/2008.10616
https://arxiv.org/abs/2012.04577
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Measurements of the cross-
section probe various BSM 
scenarios (e.g. sphalerons, 
LEDM, etc.)

Bustamante and Connolly, PRL 122, 041101 (2019)
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Monopoles
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Use IceCube as a gigaton detector 
for novel BSM particles like 
monopoles

Latest search looks for relativistic 
(𝛽 > 0.75) monopoles -- appears as 
”slow” track with a smooth light 
deposition pattern

No passing events on background 
of ~0.3, set strict upper limit 

PRL 128 051101 (2022)
arxiv 2109.13719

https://arxiv.org/abs/2109.13719
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Neutrino oscillations are affected by matter 
in the Earth

NSI leads to %-scale deviations from SM 
expectations, parameterized by 𝜖"#

Search for this using TeV 𝜈" + 𝜈"

Set world’s strongest constraint!
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PRL 125 141801 (2020)
arxiv 2005.12942

https://arxiv.org/abs/2005.12942
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IceCube Upgrade
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• 7 new strings, ~100 
sensors/string
• 5 year construction project 

underway
• Key goals: ice calibration, 

sensitivity to GeV neutrinos
• R&D platform: pixelated 

detectors, wavelength shifting 
sensors
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IceCube-Gen2 Optical
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• Enlarged, 8 km3 optical array in 
“Sunflower” layout
o 122 strings, 240m lateral spacing
o 80 Oms/string, 17m vertical spacing

• ~10x the contained volume
• 5x the effective area
• 2x the angular resolution

D-Egg mDOM

Features new 
pixelated optical 
modules
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IceCube-Gen2 Radio
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500 km2 radio array
Probes even pessimistic 
cosmogenic models

Phased-array 
for low 
threshold 
triggering

Auxiliary 
antennas for 
reconstruction
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