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Outline

1. Multimessenger astrophysics
▶ Supernovae
▶ Neutron star mergers

2. BSM physics in neutron star mergers
▶ Ultralight particles
▶ Trapped particles

▶ Particles captured by stars
▶ Particles produced in stars

▶ Emitted particles
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I: Multimessenger astrophysics

▶ Supernovae (see next talk)
▶ Photons
▶ Neutrinos
▶ Gravitational waves?

▶ Neutron star mergers
▶ Photons
▶ Neutrinos?
▶ Gravitational waves
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Neutron star mergers

Stages of a neutron star merger

1. Inspiral

2. Merger & differentially
rotating remnant (lasts 10 ms
or more)

3. Collapse to black hole
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Nuclear matter in NS mergers

Cold neutron star cores:

▶ Fermi liquid of neutrons,
protons, electrons, muons

▶ Could contain quarks,
hyperons,...

NS merger

▶ Matter heated to tens of
MeV.

▶ Traps neutrinos.

▶ Hot, dense matter is an
excellent source of new, light
particles.
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Observables in NS mergers: Gravitational
Waves

▶ Gravitational waves (GWs)
produced by coherent motion of
large quantities of matter

▶ We have measured GWs from
inspiral, but not postmerger

▶ How could BSM physics impact
GW signal?
▶ Needs to influence motion of

large quantities of matter
(inspiral, damp oscillations, ...)

10 50 100 500 1000 5000
10-25

10-24

10-23

10-22

10-21

f HHzL

S n
HfL

an
d
2Hf
»hé HfL
»L1ê2

NS-NS EOS HB
Initia

l LIG
O

AdvancedLIGO

Einstein Telescope

effectively point-particle

tidal effects

initial LIGO

advanced LIGO

Einstein Telescope

post-Newtonian inspiral

merger 

June 8, 2022 6 / 23
Courtesy of J. Read



Observables in NS mergers:
Electromagnetic

Short gamma-ray burst
How can BSM physics modify this?

▶ By modifying merger dynamics (unstudied)

▶ By introducing a new gamma ray production mechanism

Kilonova

How can BSM physics modify
this?

▶ Change amount of ejecta

▶ Change neutrino output,
changing ejecta composition
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Observables in NS mergers: Neutrinos

▶ Expect a burst of thermal neutrinos, like in SN1987a

▶ NS mergers much rarer than supernovae

▶ With a megaton ν detector (like Hyper-K) & a 3rd generation
GW detector operating together, expect 0.1-10 merger neutrinos
per century.
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Lin & Lunardini arXiv:1907.00034

Perego, Rosswog, Cabezon, Korobkin, Kaeppeli,
Arcones, Liebendoerfer arXiv:1405.6730



2: BSM physics in neutron star mergers
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(2.1) Ultralight particles
Ultralight particles can mediate an extra force between two
inspiraling neutron stars.
▶ If ma ≲ 10−11 eV, then λC ≳ RNS.

λ	∼	1/ma

Axions, scalars, and long-range
muonic forces have been discussed.
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Huang, Johnson, Sagunski, Sakellariadou,
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What can a BSM particle do in a merger?

For particles that are localized (small λCompton):

▶ λa < R : If particle is trapped (like n, p, e−) then

a
a

aa

▶ Modify merger dynamics

▶ Participate in transport
processes (κ, η, ζ, ...)

▶ λa ≳ R : If particle escapes from the merger

a

a
▶ Takes energy away from system

(cooling, premature collapse?)

▶ Escape, then decay into SM
particles
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2.2 Trapped BSM particles
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Trapped dark matter (1)
As neutron stars move through space, they can capture dark matter.
Treat dark matter as a bosonic field, interacting purely gravitationally
with SM matter.
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Trapped dark matter (2)

Dark matter modifies SM matter motion, altering gravitational wave
signal.
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Scalar particles produced in merger

Scalars (S):

▶ S mixes with Higgs with
strength sin θ

▶ This trickles down to
S-couplings with SM particles
▶ L ⊃ sin θyhNNSN̄N
▶ Mixing angle sin θ

unknown, but constrained

▶ Massive scalar {sin θ,mS}
▶ Scalar is produced in merger

environment

Mean free path of a scalar particle
(N + N ′ + S → N + N ′)
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Scalars can free-stream or be trapped. We’ll consider trapped scalars,
which form a Bose gas. Scalars can enhance transport in the remnant.
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Thermal equilibration - SM particles
Trapped particles help thermally equilibrate fluid elements in a
merger.

Energy	transfer	via	particles
with	intermediate	MFPs

zz
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If neutrinos are trapped, neutrinos
dominate thermal equilibration:
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.

Calculations from Alford, Bovard, Hanauske, Rezzolla, Schwenzer
arXiv:1707.09475
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Thermal equilibration timescale

Massive Bose gas of trapped scalar particles evens out temperature
gradients (∼ 1 km) on timescale:
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Scalars can dominate transport,
even over trapped neutrinos!

Shorter-length-scale gradients are
smoothed out faster (∼ z2)!

Dev, Fortin, SPH, Sinha, Zhang arXiv:2111.05852



2.3 Free-streaming BSM particles
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Axion emission from merger remnants

Illustration by Sandbox Studio, Chicago with Steve Shanabruch
for article in Symmetry Magazine

▶ Axions are pseudoscalar bosons
introduced to explain CP
symmetry in QCD

▶ L ⊃ Gan∂µaN̄γµγ5N

▶ Coupling strength is
unknown, but constrained.

▶ Axion can be produced via
N + N ′ → N + N ′ + a

Axions escape the merger, cooling
it.

dT

dt
=

dε / dt

dε / dT
= −Qa

cV
.

Specific Heat
▶ Dominated by the particle with the most

low-energy excitations - in mergers, this
is the neutron

▶ cV ∼ p2Fnδp = p2Fn

(
meff
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T

)
︸ ︷︷ ︸

T/vFn

= mL
npFnT .

Axion emissivity

▶ Amount of energy emitted in
axions (per volume per time)
due to n + n → n + n + a.

▶ Qa ∼ G 2
anT

6
June 8, 2022 19 / 23



Axion cooling & Neutrino diffusion

How do hot fluid elements cool down?

▶ Hot fluid elements trap
neutrinos and thus cooling
can (conventionally) only
occur via neutrino diffusion.
Diffusive cooling takes several
seconds.

▶ Analytic estimates indicate
that axion emission can cause
cooling in milliseconds

▶ Rapid cooling of hot regions
of the merger could be a
signature of axion emission.

tesc	≈	0.01	ms

tesc	≈	1	s ν

a

a
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Axion cooling in BNS merger simulation
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▶ Cooling and sphericalization observed
▶ Small changes in gravitational wave signal and amount of ejected

material. Not measurable given current uncertainties.June 8, 2022 21 / 23

Dietrich & Clough
arXiv:1909.01278
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Emission and then decay to SM particles

Dark photon decay results in a
e+e− plasma, which generates an
isotropic photon signal. Could
look for with Fermi GBM.
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Diamond & Marques-Taveres arXiv:2106.03879



Conclusions▶ Ultralight particles

▶ LIGO should be able to constrain some parameter space.

▶ Trapped particles

▶ Neutron stars can capture dark matter, which can modify the
postmerger gravitational wave signal when two stars merge.

▶ New particles can be produced in the hot, dense environment of
a NS merger. They could contribute to transport. BSM particle
transport should be done like neutrino transport. Or, at least
add thermal conductivity to hydro.

▶ Emitted particles
▶ Free-streaming particles produced in merger cool it down in

millisecond timescales. Cooling does not significantly change
GW signal or amount of ejecta.
▶ Cooling could affect neutrino signal, could shorten quark/hadron

phase transition, or could change T-dependent transport.
▶ Emitted particles can decay to SM particles outside the merger.

Or could modify short GRB. Should further examine these
signals.
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