Neutrinos in Cosmological Environments

Evan Grohs (he/him/his) North Carolina State University

Interconnections of Particle Physics and Cosmology XV Washington University St. Louis -- 08 Jun 2022

NC STATE UNIVERSITY

- I. Observational motivation
- II. What we know about the energy density of the universe
 - A. Radiation (early universe)
 - B. Matter (later universe)
- III. Other areas of cosmology to look for neutrino physics
- IV. Outlook for neutrino mass
 - A. Concordance scenarios
 - B. Beyond concordance
- V. Summary

Snowmass 2021 White Paper

Synergy between cosmological and laboratory searches in neutrino physics: a white paper

Editors: Martina Gerbino¹, Evan Grohs², Massimiliano Lattanzi³

Kevork N. Abazajian,¹ Nikita Blinov,² Thejs Brinckmann,^{3,4} Mu-Chun Chen,⁵ Zelimir Djurcic,⁶ Peizhi Du,⁷ Miguel Escudero,⁸ Martina Gerbino,⁴ Evan Grohs,⁹ Steffen Hagstotz,¹⁰ Kevin J. Kelly,^{11,12} Massimiliano Lattanzi,⁴ Christiane S. Lorenz,¹³ Marilena Loverde,¹⁴ Pablo Martínez-Miravé,^{15,16} Olga Mena,¹⁵ Joel Meyers,¹⁷ Walter Pettus,¹⁸ Ninetta Saviano,^{19,20} Anna M. Suliga,^{21,22} Volodymyr Takhistov,²³ Mariam Tórtola,^{15,16} José W. F. Valle,¹⁵ Benjamin Wallisch^{24,25}

arXiv: 2203.07377

The coming era of precision cosmology

I. CMB Stage-IV and others

- A. Simons Observatory Atacama Desert, Chile
- B. South Pole Observatory South Pole
- c. Other CMB experiments CLASS and QUIET
- D. Satellites: LiteBIRD and PIXIE

II. Thirty-meter class telescopes

- A. EELT and GMT Atacama
- в. ТМТ Mauna Kea, Hawaii

III. Surveys

- A. DES Cerro Tololo, Chile
- B. DESI Kitt Peak, AZ
- c. Vera Rubin Observatory Cerro Pachón, Chile
- D. Satellites: Euclid, Roman, SPHEREx

b.

C.

Time $\gtrsim 100$ sec.

Out-of-Equilibrium Neutrino Energy Transport

Neutrino scattering on charged leptons

 $\nu_i + \overline{\nu}_i \leftrightarrow e^- + e^+$ $\nu_i + e^{\pm} \leftrightarrow \nu_i + e^{\pm}$

Important for CMB parameter for radiation energy density

 $\delta \rho_{\nu} \sim 1\%$

Neutrino Transport coupled to Nuclear Reaction Network (Grohs et al 2016) $\delta(^{4}{\rm He}) \sim 4 \times 10^{-4}$ $\delta({\rm D/H}) \sim 3 \times 10^{-3} \longleftarrow$

Neutron-to-Proton Rates

 $\begin{array}{c} \nu_e + n \leftrightarrow p + e^- \\ e^+ + n \leftrightarrow p + \overline{\nu}_e \end{array} \begin{array}{c} \epsilon \\ t \\ n \leftrightarrow p + e^- + \overline{\nu}_e \end{array}$

6 rates normalized to neutron lifetime

$$m_n-m_p\simeq 1.3~{
m MeV}$$

Rule of thumb: ⁴He 25% by mass p p p p p p p p p p p p p p p p p n p p p p p p p n

Neutrino physics occurring during BBN

Coincident epochs during BBN

Dashed lines: weak equilibrium or NSE

Bond+ (In Prep.)

Radiation energy density during Recombination

Computing CMB observables requires energy density

$$\rho_{\rm rad} = \rho_{\gamma} + \rho_{\rm other} = \begin{bmatrix} 2 + 2\frac{7}{8} \left(\frac{4}{11}\right)^{4/3} & N_{\rm eff} \end{bmatrix} \frac{\pi^2}{30} T^4$$
Photon Contribution Non-Photon Contribution

Effective number of neutrinos: parameter for non-photon energy density

Need not be an integer!

Effects of Radiation on CMB

Black points are Planck 2018 data values

Temperature Power Spectrum Non-photon radiation Non-damped Temperature Power Spectrum

Free-streaming radiation

Planck 2018:
$$N_{\rm eff} = 2.92^{+0.18}_{-0.19} \, (1\sigma)$$

Matter Power Spectrum

Neutrinos become non-relativistic: $z_{ m nr} \sim 100$

Power suppressed from neutrino free-streaming at small scales

Planck 2018: $\Sigma m_{
u} < 0.120 \,\mathrm{eV} \,(2\sigma)$

Contributions to Matter Power Spectrum (forecasts)

CMB Lensing CMB-S4

Galaxy Density VRO Gold sample

Cluster Counts tSZ counts from CMB-S4

Contributions weighted by S/N (x3 for CMB Lensing)

Baryon-Acoustic Oscillation Phase Shift

Similar physics of free-streaming radiation influencing CMB phase shifts Detectable [see Baumann et al (2019)]

Constraints on non-standard Neutrino Cosmologies

I. Sterile Neutrinos

- a. *N*_{eff} sensitivity from *O*(eV)
- b. Dark matter contribution for O(keV)
- c. Early Universe dynamics O(MeV)

II. Neutrino non-standard interactions

a. Influence on free-streaming assumptions (possible Hubble tension amelioration)

III. Neutrino lepton numbers

- a. Leptogenesis models
- b. BBN abundances

IV. Neutrino lifetime (from free-streaming): $~ au_ u \geq 4 imes 10^6 (m_ u/0.05\,{ m eV})^5$

V. Low-temperature Reheating (decrease in N_{eff})

Concordance Scenarios for neutrino mass

Beyond Concordance for neutrino mass

1. First Scenario

- a. Signal in $0\nu 2\beta$
- b. No detection of $\Sigma m_{\nu} \neq 0$
- c. Severe challenge to Λ CDM and thermal history of neutrino spectra
- d. Any detection from endpoint experiments would further challenge ΛCDM

2. Second Scenario

- a. Signal in $0\nu 2\beta$
- b. Detection of $\Sigma m_{\nu} \neq 0$
- c. Signals discordant, i.e., do not lie in bounded areas of previous plot
- d. Possible Causes:
 - i. Another challenge to ΛCDM
 - ii. Sterile states contributing to $m_{\beta\beta}$
 - iii. Exotic physics beyond neutrino mass

Summary

1. Solid evidence for the existence of neutrinos in hot big bang cosmology

- 1. CMB and BAO show $N_{\rm eff}$ not equal to zero
- 2. BBN shows neutrinos have ~thermal spectra
- 2. Future probes will show even more sensitivity to neutrino energy spectra
- 3. Convolution of terrestrial experiments and cosmological probes may reveal basic neutrino properties
- 4. Discordance between terrestrial and cosmology will undoubtedly reveal new physics