XV International Conference on Interconnections between Particle Physics and Cosmology

> June 6-10, 2022 Hosted by Washington University in St. Louis

## **AMS Physics Results**







**Matteo Duranti** 

INFN Sez. Perugia on behalf of the AMS Collaboration



#### the instrument

• physics results

#### • the future...

06/06/22



06/06/22

M. Duranti - PPC2022

The instrument

2



#### A precision, multipurpose, TeV spectrometer



06/06/22



#### 2010: AMS-02 assembled

#### AMS facts:

5 m x 4 m x 3m
7.5 tons

300k read-out channels

 more than 600 microprocessors reduce the *rate* from 7 Gb/s to 10 Mb/s

•

total power < 2.5 kW





#### 2011: AMS launch - @ JSC, Texas





#### 2011: AMS launch - @ KSC, Florida

2008 t - AMS weight: 7.5 t









M. Duranti – PPC2022

06/06/22



#### ISS Data – 1.03 TeV Electron



## Particle identification

TRD

TOF

3-4 5-6

TOF

RICH

ECAL



- Momentum (P, GeV/c)
- Charge (Z)

06/06/22

- Rigidity (R=P/Z, GV)
- Energy (E, GeV/A)
- Flux (signals/(s sr m<sup>2</sup> GeV))

|                                                       |                                                            |                                |                                                     |                                           |                                                                             | e⁻                                                                |                    | Ρ                                        |                                          | Fe                                                             |                                                                        | e+                                               |                                                  | P                                                               |                                                 | He                                                       |                                          |
|-------------------------------------------------------|------------------------------------------------------------|--------------------------------|-----------------------------------------------------|-------------------------------------------|-----------------------------------------------------------------------------|-------------------------------------------------------------------|--------------------|------------------------------------------|------------------------------------------|----------------------------------------------------------------|------------------------------------------------------------------------|--------------------------------------------------|--------------------------------------------------|-----------------------------------------------------------------|-------------------------------------------------|----------------------------------------------------------|------------------------------------------|
|                                                       |                                                            |                                | ΤF                                                  | RD                                        |                                                                             |                                                                   |                    | Ŧ                                        | -                                        | V                                                              |                                                                        | ≺≺≺                                              |                                                  | T                                                               |                                                 | ۲                                                        |                                          |
| 8, <sup>1</sup>                                       | • .                                                        | TOF                            |                                                     |                                           |                                                                             | Ŧ                                                                 |                    | T                                        | V                                        |                                                                |                                                                        | ۲                                                |                                                  | Ŧ                                                               |                                                 | Y                                                        |                                          |
| • •                                                   |                                                            | Tracker<br>+ Magnet            |                                                     |                                           |                                                                             |                                                                   |                    |                                          |                                          |                                                                |                                                                        |                                                  |                                                  |                                                                 |                                                 | ノ                                                        |                                          |
|                                                       |                                                            | RICH                           |                                                     |                                           |                                                                             |                                                                   | /                  | Ę                                        | 0                                        |                                                                | $\bigcirc$                                                             |                                                  |                                                  |                                                                 | $\bigcirc$                                      |                                                          |                                          |
|                                                       |                                                            | ECAL                           |                                                     |                                           |                                                                             |                                                                   | *****              |                                          | ŧ                                        |                                                                |                                                                        |                                                  | ****                                             |                                                                 | ŧ                                               |                                                          |                                          |
| 1<br>H<br>Hydrogen<br>1.008                           |                                                            |                                |                                                     |                                           |                                                                             |                                                                   |                    |                                          |                                          |                                                                |                                                                        |                                                  |                                                  |                                                                 |                                                 |                                                          | 2<br>Heliu<br>4.00                       |
| 3 Li<br>Lithium<br>6.941<br>11 Na<br>Sodium<br>22.990 | 4<br>Beryllium<br>9.012<br>12<br>Mg<br>Magnesium<br>24.305 |                                |                                                     |                                           |                                                                             |                                                                   |                    |                                          |                                          |                                                                |                                                                        | 5<br>Boron<br>10.811<br>13<br>Aluminum<br>26.982 | 6<br>Carbon<br>12.011<br>14<br>Silicon<br>28.086 | 7<br>N<br>Nitrogen<br>14.007<br>15<br>P<br>Phosphorus<br>30.974 | 8<br>Oxygen<br>15.999<br>16<br>Sulfur<br>32.066 | 9<br>Fuorine<br>18.998<br>17<br>Cl<br>Othorine<br>35.453 | 10<br>Neo<br>20.11<br>18<br>Arga<br>39.9 |
| 19<br>K<br>Potassium<br>39.098<br>37<br>Rb            | 20<br>Ca<br>Calcium<br>40.078                              | 21<br>Sc<br>Scandium<br>44.956 | <sup>22</sup><br>Ti<br><sup>Titanium</sup><br>47.88 | 23<br>V<br>Vanadium<br>50.942<br>41<br>Nb | <sup>24</sup><br>Cr<br><sup>Chromium</sup><br>51.996<br><sup>42</sup><br>Mo | <sup>25</sup><br>Mn<br>Manganese<br>54.938<br><sup>43</sup><br>Tc | 26<br>Fe<br>55.933 | 27<br>Co<br>Cobalt<br>58.933<br>45<br>Rh | 28<br>Ni<br>Nickel<br>58.693<br>46<br>Pd | <sup>29</sup><br>Cu<br><sub>Copper</sub><br>63.546<br>47<br>Ag | <sup>30</sup><br>Zn<br><sup>Zinc</sup><br>65.39<br><sup>48</sup><br>Cd | 31<br>Ga<br>Gallium<br>69.732<br>49<br>In        | 32<br>Germanium<br>72.61                         | 33<br>As<br>Arsenic<br>74.922<br>51<br>Sb                       | 34<br>Se<br>selenium<br>78.09                   | 35<br>Br<br>Bromine<br>79.904                            | 36<br>K<br>84.8<br>54<br>X               |

Pt

Platinum 195.08

Ds

Hg Mercury 200.59

Au Gold 196.967 Pb Lead 207.2

 111
 112
 113
 114
 115
 116
 117
 118

 Rg
 Cn
 Uut
 FI
 Uup
 Lv
 Uus
 Uuo

П

Rn

M. Duranti – PPC2022

Fr Ra

Cs Ba Cesium 132,905
Barium 137,327



#### e/p discrimination

One important lesson from the AMS experiment is the importance of the redundancy: use one detector to create control sample for another one.



<sup>10<sup>-2</sup></sup> 10<sup>-3</sup> **Normalized Entries** 

**Events** 140

100

80 60

40

20

Fit to data (e<sup>+</sup> + e<sup>-</sup>) signal

 $\chi^2/d.f. = 0.55$ 

0.2 0.4 0.6 0.8

1

1.2 1.4 1.6 1.8

TRD Classifier

Proton backgroun

**Study of the difference** 

dE/dx and TR in 20

+ straw tubes

(i.e. likelihood) between

layers of fleece radiator



#### Charge measurement



# AMS-02

#### Control of fragmentation inside the detector



#### Mass separation (i.e. isotopical measurement)



AMS-0

# AMS-02

06/06/22

#### Momentum Scale Verification



The accuracy of the momentum is determined to be 1/(30,000 GeV) i.e. at 1 TeV the uncertainty is 3%

M. Duranti – 22C2O22

6



06/06/22

## **Physics Results**

M. Duranti – PPC2022

17

### Study of Positrons & Electrons

06/06/22



### Study of Positrons & Electrons

06/06/22



M. Duranti – 77C2022

### Study of Positrons

The positron flux is the sum of low-energy part from cosmic ray collisions plus a high-energy part from a new source or dark matter both with a cutoff energy *E*<sub>S</sub>.

06/06/22



### Study of Positrons & Electrons

06/06/22



M. Duranti - 77C2022

# AMS-02

#### Antiprotons vs positrons

Antiproton data show a similar trend as positrons.

06/06/22



# AMS-02

#### Antiprotons vs positrons

The positron-toantiproton flux ratio is constant independently of energy. Antiprotons cannot come from pulsars.

06/06/22





The

negligible

06/06/22





#### Electron spectrum without source term disfavored

06/06/22



M. Duranti – 77C2022



06/06/22

#### Electrons



M. Duranti – 77C2022



#### Nuclear matter

In ten years we have studied 15 (16) elements. In the next ten years we will study the other 14 elements.

This will provide the foundation for a comprehensive theory of the cosmos

06/06/22



## Nuclear matter

#### The full set of AMS results is challenging all the theoretical models



06/06/22

M. Duranti – 22C2022

28

## Primary Cosmic Rays

06/06/22



M. Duranti – PPC2022

29

#### AMS-02 Secondary Cosmic Rays



#### Primaries vs Secondaries

Each has their own rigidity dependence but distinctly different from each other.

06/06/22

AMS-02



M. Duranti – 77C2022



06/06/22

#### Heavier primary cosmic rays



M. Duranti – 77C2022



Unexpected Result: Iron is in the He, C, O primary cosmic ray group instead of the expected Ne, Mg, Si group.

06/06/22



M. Duranti – 22C2O22

33



06/06/22



Fluorine

06/06/22



M. Duranti – PPC2022

35



#### Third group

The Third Group of Cosmic Rays: N, Na, Al

The fluxes are well described as a sum of a primary component + a secondary component

06/06/22



M. Duranti – 77C2022



sotopes

06/06/22



<u> M. Duranti - 22022</u>

37

<sup>10</sup>Be/<sup>9</sup>Be

<sup>9</sup>Be stable <sup>10</sup>Be ~ 1.4 10<sup>6</sup> y

06/06/22

AMS data constrains the halo size h



M. Duranti – 77C2022

### Time variations: protons

These are new and unique probes of fundamental properties of solar system and provide safety

information for interplanetary travel.

06/06/22



Yearly, Monthly, Daily Proton Flux from 5.5 billion events Unexpected observation of periodic

M. Duranti - 22C2022



06/06/22

#### Protons vs electrons and positrons





Conclusion

in the first 10 years AMS-02 produced a wide set of high statistics, high accuracy, unprecedented, cosmic ray measurements

this set of measurements is challenging the theoretical community for a fully comprehensive model able to explain all the observed features

AMS will be operated for the full life-time of the ISS (2032?). In case of <u>upgrade</u>, some channels will have a significant boost in statistics/accuracy

### AMS-02 upgrade "LO"

New Silicon Tracker Layer: one plane, two layers, each ~ 4m<sup>2</sup>

06/06/22

AMS-02



Acceptance increased to 300% (10 years data becomes 30 years data)

# MS-02 upgrade "LO"

#### 10x10 cm<sup>2</sup> sensors (INFN-Perugia, Italy)

new ladder, mech. proto



06/06/22



#### M. Duranti - 77C2022

## Stay tuned...

CUATION INSTRUCTIONS

APLA INMEDIATELY S AS FRANKE EXECUTION ROUTES. O ON EXEMPTORS. TED AREAS. DIFESE INSTRUCTIONS. INVETTO UNLESS OTHERWISE INSTRUCTED. OF THE GATES IND UNITE STRIPED.

displaying in the local sector

----

----