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The Question

Are voids magnetized?
Voids are ~50 Mpc 

in size.

SDSS
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A Lower Bound
Neronov & Vovk, 2010

Essey, Ando & Kusenko 2011
(and several other groups since)

Fig. 1: A comparison of models of cascade emission from TeV blazars (thick solid black curves)
with Fermi upper limits (grey curves) and HESS data (grey data points). Thin dashed curves
show the primary (unabsorbed) source spectra. Dotted curves show the spectra of electromag-
netic cascade initiated by pair production on EBL. Vertical lines with arrows show the energies
below which the cascade emission should be suppressed.
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Blazar Cascades + B

GeV flux gets spread out by 
magnetic field and becomes too 

dilute to distinguish from background 
for strong enough B.

Credit: Nina McCurdy and Joel R. Primack/UC-HiPACC
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Magnetic field lower bounds:
Neronov & Vovk, 1006.3504
Tavecchio, Ghisellini, Foschini, Bonnoli, Ghirlanda & Coppi, 1004.1329
Dolag, Kachelriess, Ostapenko, Tomas, 1009.1782
Dermer, Cavadini, Razzaque, Finke, Chiang & Lott, 1011.6660
Essey, Ando & Kusenko, 1012.5313
Taylor, Vovk & Neronov, 1101.0932
Huan, Weisberger, Arlen & Wakely, 1106.1218
Takahashi, Mori, Ichiki, Inoue & Takami, 1303.3069
Finke et al, 1510.02485
Ackermannn et al (Fermi-Lat), 1804.08035
Podlesnyi, Dzhatdoev & Galkin, 2204.11110

Plasma instability debate:
Broderick, Chang & Pfrommer, 1106.5494, … 
Schlickeiser, Ibscher & Supsar, Ap. J. 758, 102 (2012).
Miniati & Elyiv, 1208.1761
Batista, Saveliev & Dal Pino, 1904.13345



Halo Detection: Stacked Analyses
Ando & Kusenko, 2010

Detection of cascade photons from (stacked) sources.
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FIG. 1. γ-ray counts maps of the stacked sources in the 1GeV-
1.58GeV energy bin. The large circles show the outer edge of
the detection region. (a) Counts map of the 24 stacked low-
redshift HSP BL Lacs. (b) Smoothed counts difference be-
tween the stacked BL Lacs and the center-normalized stacked
FSRQs. Positive values indicate the BL Lacs’ counts is greater
than the FSRQs’.
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FIG. 2. Angular distribution of photon events around the
stacked pulsars (black), the stacked FSRQs (red), and the
stacked BL lacs (blue): vertical errors are the 95% confidence
intervals; horizontal errors show the size of angular bins.

understanding of the PSF is critical for this type of study.
Pulsars with unresolved pulsar wind nebulae (PWN) can
be used as calibration sources since they are effective
point sources for Fermi-LAT [5, 7]; here we choose the
Crab and Geminga pulsars as our calibration sources.
No evidence for a PWN has been found associated with
Geminga [16] making it a natural choice. The size of

the Crab PWN is about 0.05◦ [17], which is smaller than
Fermi’s angular resolution, providing us with a second
good source for verifying the PSF. To compare different
angular distribution profiles of different stacked sources,
we calculate and remove the diffuse background for each
source, sum the background-subtracted counts and then
normalize the profiles. We calculate the angular pro-
files for stacked pulsars (Crab and Geminga), the 24 BL
Lacs, and the 26 FSRQs, as shown in Fig. 2. The errors
give the 95% confidence intervals of getting the number
of counts in each angular bin. The angular profiles for
stacked pulsars agree with the up-to-date PSFs in each
energy range [10]. However, the normalized angular pro-
files of stacked BL Lacs have a lower scaled counts per
unit solid angle in the inner regions (small θ), provid-
ing evidence for extended emission since the additional
counts in the extended halo reduce the scaled counts at
small angles after normalization. The deficit in counts at
small θ (evidence for extended emission) is more signifi-
cant at lower energy ranges, consistent with the expecta-
tion that the angular extent of the halo is larger at lower
energies, as indicated in Eq. 1. In contrast, the angular
profiles of the stacked FSRQs are indistinguishable from
our surrogate point-source data from pulsars, as shown
in Fig. 2.

STATISTICAL EVIDENCE FOR PAIR-HALO

EMISSION AND ESTIMATION OF THE IGMF

To model the normalized angular profiles g(θ), we use

g(θ; fhalo,Θ) = fhaloghalo(θ;Θ) + (1− fhalo)gpsf(θ), (2)

where fhalo is the fraction of the pair halo component,
gpsf(θ) is the PSF and ghalo(θ;Θ) is a Gaussian function
of θ in the small angle approximation convolved with
the PSF. Then, the number of photon events in the i-th
angular bin is estimated by

λi(fhalo,Θ,λb,i, N
∗) = (N∗gi + µb)Ωi, (3)

where gi is the discrete value of the normalized angular
distribution g(θ) given by Eq. 2, N∗ is a normalization
factor, µb is the assumed uniform background counts per
unit solid angle, and Ωi is the solid angle of the i-th bin.
For a given configuration of the angular bins, a set of
estimators {λi} is a function of fhalo, Θ, µb, and N∗.
Maximum likelihood estimation is used for the model

fitting. The likelihood L is defined in the 4-dimensional
space of the model parameters, x = (fhalo,Θ, µb, N∗), as
the joint probability for a number of Poisson processes of
getting a set of observed γ-ray counts in all the n angular
bins {Ni}(i = 1, 2, ..., n) with Nbg background counts in
the background bin:

L(x|{Ni}) =

(

n
∏

i=1

P (Ni|λi)

)

× P (Nbg|µbΩbg), (4)

Chen, Buckley & Ferrer, 2015
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FIG. 1. γ-ray counts maps of the stacked sources in the 1GeV-
1.58GeV energy bin. The large circles show the outer edge of
the detection region. (a) Counts map of the 24 stacked low-
redshift HSP BL Lacs. (b) Smoothed counts difference be-
tween the stacked BL Lacs and the center-normalized stacked
FSRQs. Positive values indicate the BL Lacs’ counts is greater
than the FSRQs’.
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FIG. 2. Angular distribution of photon events around the
stacked pulsars (black), the stacked FSRQs (red), and the
stacked BL lacs (blue): vertical errors are the 95% confidence
intervals; horizontal errors show the size of angular bins.

understanding of the PSF is critical for this type of study.
Pulsars with unresolved pulsar wind nebulae (PWN) can
be used as calibration sources since they are effective
point sources for Fermi-LAT [5, 7]; here we choose the
Crab and Geminga pulsars as our calibration sources.
No evidence for a PWN has been found associated with
Geminga [16] making it a natural choice. The size of

the Crab PWN is about 0.05◦ [17], which is smaller than
Fermi’s angular resolution, providing us with a second
good source for verifying the PSF. To compare different
angular distribution profiles of different stacked sources,
we calculate and remove the diffuse background for each
source, sum the background-subtracted counts and then
normalize the profiles. We calculate the angular pro-
files for stacked pulsars (Crab and Geminga), the 24 BL
Lacs, and the 26 FSRQs, as shown in Fig. 2. The errors
give the 95% confidence intervals of getting the number
of counts in each angular bin. The angular profiles for
stacked pulsars agree with the up-to-date PSFs in each
energy range [10]. However, the normalized angular pro-
files of stacked BL Lacs have a lower scaled counts per
unit solid angle in the inner regions (small θ), provid-
ing evidence for extended emission since the additional
counts in the extended halo reduce the scaled counts at
small angles after normalization. The deficit in counts at
small θ (evidence for extended emission) is more signifi-
cant at lower energy ranges, consistent with the expecta-
tion that the angular extent of the halo is larger at lower
energies, as indicated in Eq. 1. In contrast, the angular
profiles of the stacked FSRQs are indistinguishable from
our surrogate point-source data from pulsars, as shown
in Fig. 2.

STATISTICAL EVIDENCE FOR PAIR-HALO

EMISSION AND ESTIMATION OF THE IGMF

To model the normalized angular profiles g(θ), we use

g(θ; fhalo,Θ) = fhaloghalo(θ;Θ) + (1− fhalo)gpsf(θ), (2)

where fhalo is the fraction of the pair halo component,
gpsf(θ) is the PSF and ghalo(θ;Θ) is a Gaussian function
of θ in the small angle approximation convolved with
the PSF. Then, the number of photon events in the i-th
angular bin is estimated by

λi(fhalo,Θ,λb,i, N
∗) = (N∗gi + µb)Ωi, (3)

where gi is the discrete value of the normalized angular
distribution g(θ) given by Eq. 2, N∗ is a normalization
factor, µb is the assumed uniform background counts per
unit solid angle, and Ωi is the solid angle of the i-th bin.
For a given configuration of the angular bins, a set of
estimators {λi} is a function of fhalo, Θ, µb, and N∗.
Maximum likelihood estimation is used for the model

fitting. The likelihood L is defined in the 4-dimensional
space of the model parameters, x = (fhalo,Θ, µb, N∗), as
the joint probability for a number of Poisson processes of
getting a set of observed γ-ray counts in all the n angular
bins {Ni}(i = 1, 2, ..., n) with Nbg background counts in
the background bin:

L(x|{Ni}) =

(

n
∏

i=1

P (Ni|λi)

)

× P (Nbg|µbΩbg), (4)

Halo detected at ~3.5 sigma.



Halo shape and magnetic helicity
Elyiv, Nerolnov & Semikoz

Tashiro & TV
Duplessis & TV

Long & TV
Batista, Saveliev, Sigl & TV

Broderick et al
Tiede et al
Fitousi et al

…

lower energy

Morphology:

Figure 11. (Top Left) A set of simulated observed photons from the halo formed by a blazar’s jet
with half-opening angle of 5�. The surrounding random magnetic field was created with parameters
described in Eq. (6.2) and has the form given by Eq. (6.1). (Bottom Left) The PP locations of
the photons responsible for the halo. (Right) The result of applying the Q-statistic to the observed
photons on the right.

6 The Q statistic Applied to Stochastic Magnetic Fields

The result of Fig. 11 is noisy and can be misleading as we are dealing with random magnetic
fields. Indeed, these fields can sometimes create halos whose Q-statistics suggest the wrong
helicity. It is therefore important to average over many realizations of the magnetic field and
the jet orientation. Each realization will simulate a blazar with a jet of half-opening angle
✓jet = 5� and having Earth in its LoS. The jet is also constrained to generate a halo with
at least 3 events in order for the statistics to be applied; this condition is easily satisfied if
Earth is in the jet’s LoS. Jets pointing further away from the LoS might still yield observable
photons but we would not be able to identify these blazars and so we don’t simulate those
cases.

We will consider magnetic fields of the form,

B(x) =
1

2N2 + 2

X

k2K
b(k, fH, Brms)e

ik·x (6.1)

with the set K consisting of 2N2+2 vectors which have magnitude kmag and whose directions
are approximatively uniformly spread over the unit sphere. Half of the Fourier coe�cients
b(k, fH, Brms) are drawn from their respective distribution as outlined in Appendix A, while
the other half are set by the requirement b(k, fH, Brms) = b

⇤(�k, fH, Brms), necessary for
obtaining a real value for the magnetic field. The value of �1  fH  1 controls the

– 14 –
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FIG. 1: The window function W (k) of (25).

k⇤L: hB
2
linei ⇠ ⇢B/(k⇤L). This is to be expected since

the e↵ect of small scale fields add up incoherently as in
a random walk and the net FR is suppressed by a fac-
tor 1/

p
N where N ⇠ k⇤L is the number of steps in the

random walk.
Alternately, we note that W (k) � 0 and EM (k) � 0.

Then a constraint such as

hB
2
linei =

Z 1

0

dk

k
W (k)kEM (k) < B

2
⇤ (26)

means that the integral over every logarithmic interval
also satisfies the constraint. Then we can write the con-
straint as,

B
2
�

= 2kEM (k) <
⇠

2B
2
⇤

W (k)
(27)

Broadly speaking, current observations place upper
bounds on the cosmological magnetic field strength7

B�
<
⇠ 10�9 G (up to O(1) factors) for � ⇠ 100 Mpc �

1 Gpc, while blazar cascade observations place lower
bounds B�

>
⇠ 3 ⇥ 10�16 G assuming � >

⇠ 10 kpc [48–51]8.
Here we will only discuss blazar observations in detail

as these appear to have a lot of promise for detecting
and measuring the magnetic field strength and also the
magnetic helicity. We will also briefly mention a recent
promising proposal based on the e↵ect of magnetic fields
on cosmological recombination (see Sec. II B 2).

A. Electromagnetic cascades from blazars

The idea underlying the use of blazars to detect inter-
galactic magnetic fields is illustrated in Fig. 2 [61–63].

7
The constraints are on the magnetic field in CGS-Gaussian units.

The conversion from Lorentz-Heaviside (LH) to CGS magnetic field

strength is BLH
= BCGS/

p
4⇡.

8
It should be noted that even though the existence of electromag-

netic cascades is widely adopted, there is a possibility that plasma

instabilities may change the picture as we discuss in Sec. II A.

e+e- I.C.

EBL CMB
TeV GeV

~100 Mpc

~ Gpc

~ kpc

FIG. 2: The three legs of the TeV photon’s journey from
the blazar to the observer in the presence of an inter-galactic
magnetic field. The first TeV leg is terminated by pair pro-
duction o↵ an EBL photon, the second leg is in the form of
lepton pairs and is terminated by an inverse Compton (I.C.)
scattering event. The final GeV leg then propagates to the
detector, perhaps onboard a satellite. Note that the second
leg length scale of ⇠ kpc shown in the drawing is the mean
free path of the electron and not the cooling distance which
is ⇠ 300 kpc. In any case, the second leg of the journey is
tiny compared to the first leg ⇠ 100 Mpc and the third leg
⇠ 1 Gpc. Only the second leg probes the inter-galactic mag-
netic field.

Active galactic nuclei jets that are approximately
pointed in our direction are called blazars. The jets have
intrinsic opening angles ⇠ 1� [64] and they can emit very
high energy gamma rays, including in the TeV energy
range. There are 3 legs in the TeV photon’s journey
from the blazar to Earth as we now describe.

In the first leg of its journey, the TeV photon can en-
counter a photon of the “extra-galactic background light”
(EBL). The EBL is due to all sources of photons in the
universe, e.g. starlight that has originated from sur-
rounding galaxies. The EBL spectrum is not known with
certainty but it is modeled based on a variety of observa-
tions (see [4] for a summary). The EBL contains photons
in the ultraviolet and optical, 0.1�10 eV. This is impor-
tant because the TeV photon from the blazar can then
scatter o↵ an EBL photon and the center of momentum
energy will be above threshold to produce an electron-
positron (e+

e
�) pair. The distance that a TeV photon

can travel before pair producing o↵ the EBL is [4, 65],

D(E) ⇠
80 Mpc

(1 + zs)2

✓
10 TeV

E

◆
. (28)

up to EBL model-dependent numerical factors; zs is the
redshift of the source.

The second leg of the journey is the propagation of
the e

+
e
�that carry the original TeV energy. Kinematics

tells us that the angle the electron and positron make
with the forward direction is ⇠ me/TeV ⇠ 10�6 where
me = 0.5 MeV is the mass of the electron.

Coming to the third leg of the journey, electrons and
positrons can only propagate a short distance before
encountering CMB photons – the most abundant pho-
tons in the universe with energy ⇠ 10�4 eV and num-
ber density nCMB ⇠ 500/cm3. The mean free path is
l ⇠ 1/(nCMB�T ) ⇠ kpc where �T = 6.6 ⇥ 10�25 cm2 is

CASE 1

CASE 2

CASE 3

CASE 4

CASE 5

CASE 1

CASE 2

CASE 3

CASE 4

CASE 5

Figure 2. The five magnetic field configurations that we consider. Cases 1-3 are homogeneous field configura-
tions that have different orientations with respect to the line of sight with the blazar. Cases 4-5 are helical field
configurations with their wavevectors oriented either along or normal to the line of sight.

4.2 Case 2: Uniform Magnetic Field Normal to Line of Sight
Next we consider a homogeneous magnetic field that is oriented normal to the line of sight with the
blazar (see Fig. 2). Without loss of generality we can align the Cartesian coordinate system with the
magnetic field such that

B̂ = ŷ = sin � ⇢̂ + cos � �̂ . (4.4)

and Eqs. (3.17)-(3.19) reduce to

sin � cos(�/2 � ✓) = 0 (4.5a)

sin ✓ =
d�0
ds

sin � (4.5b)

1 � cos � =
⇣
1 � sin2(� � ✓) sin2 �

⌘⇣
1 � cos(De/R)

⌘
. (4.5c)

For a given gamma ray energy E� there is a solution

� = 0, ⇡ , sin ✓ =
d�0
ds

sin � , and cos � = cos
De

R
(4.6)

where E� enters through d�0/ds and De/R, see Eqs. (2.10) and (2.11). Recall that De/R > 0 is
unbounded from above but 0  �  ⇡ and 0  ✓  ⇡/2. For this magnetic field configuration, the
trajectories of all the gamma rays lie in the y = 0 plane where � = 0, ⇡. In the limit of small lepton
deflection, De/R ⌧ 1, the solution further simplifies to

✓ ⇡ ⇥ext =
d�0De

dsR
(4.7)

– 11 –

helical B

<latexit sha1_base64="MwQHCDcAJ+R5YvBifMjdgIuOGnU="></latexit>

helicity ⇠ B ·r⇥B

Tashiro, Chen, Ferrer & TV
Asplund, Johannesson & Brandenberg

Kachelriess & Martinez



B & CMB

Jedamzik & Abel, 2013
Jedamzik & Saveliev, 2018

Primordial magnetic fields lead to inhomogeneous cosmic recombination.

Inhomogeneous cosmic recombination due to magnetic fields
can help to at least partially resolve the “Hubble tension”. 

(Further work ongoing.)
Jedamzik & Pogosian, 2020

Jedamzik, Pogosian & Zhao, 2021
Rashkovetskyi, Munoz, Eisenstein & Dvorkin, 2021

Thien, Gial, Hill, Kosowsky & Spergel, 2021
Galli, Pogosian, Jedamzik & Balkehol, 2022



Time to turn the elephant around….

…and look at it from the particle physics 
viewpoint.



What could have 
magnetized the Universe?

Several ideas (using known-unknown physics and 
with a range of assumptions): 

astrophysical outflows; 
turbulence at recombination; 
axions & QCD; 
QCD physics; 
cosmic inflation…
electroweak symmetry breaking

Harrison;
Turner & Widrow;

TV;
Kisslinger;

Miniati, Gregori, Reville & Sarkar;
 …



Electroweak to Maxwell
<latexit sha1_base64="JvLmHLbRDYJyD6xKwcEH3hQR9PI=">AAACAXicbVDLSsNAFJ34rPUVdSO4GSyCi1KStvaxK7hxWcE+pI1hMp20QycPZiZCCXXjr7hxoYhb/8Kdf+M0CeLrwHAP59zLnXuckFEhDeNDW1peWV1bz23kN7e2d3b1vf2uCCKOSQcHLOB9BwnCqE86kkpG+iEnyHMY6TnT84XfuyVc0MC/krOQWB4a+9SlGEkl2fphz6Y3ZhEuSjktlSK8tqmtF4ySkQD+JWZGCiBD29bfh6MARx7xJWZIiIFphNKKEZcUMzLPDyNBQoSnaEwGivrII8KKkwvm8EQpI+gGXD1fwkT9PhEjT4iZ56hOD8mJ+O0txP+8QSTdhhVTP4wk8XG6yI0YlAFcxAFHlBMs2UwRhDlVf4V4gjjCUoWWT0Jo1htVs65ubzbOailRqFS+QuiWS2atVL2sFlqtLI4cOALH4BSYoA5a4AK0QQdgcAcewBN41u61R+1Fe01bl7Rs5gD8gPb2CTeMlSM=</latexit>

W 1
i ,W

2
i ,W

3
i , YiElectroweak: all massless

at T~100 GeV (1015 K), t~1 ns
— electroweak plasma

<Higgs>

Weak; E&M: photon massless
<latexit sha1_base64="nD8KPWFbGVFhadMMJLhCNZQbjTc=">AAACBXicbVDLTgIxFO3gC/GFutRFIzExEcmMII8dxo1LTIQhwjDplAINnUfajgmZsHHjr7hxoTFu/Qd3/o0dmBhfJ7m5J+fcm/YeJ2BUSF3/0FILi0vLK+nVzNr6xuZWdnunJfyQY9LEPvN520GCMOqRpqSSkXbACXIdRkxnfBH75i3hgvretZwExHLR0KMDipFUkp3d70Zm79imeWj2TuJ209Nt2p3m4blN7WxOL+gzwL/ESEgOJGjY2fdu38ehSzyJGRKiY+iBtCLEJcWMTDPdUJAA4TEako6iHnKJsKLZFVN4qJQ+HPhclSfhTP2+ESFXiInrqEkXyZH47cXif14nlIOqFVEvCCXx8PyhQcig9GEcCexTTrBkE0UQ5lT9FeIR4ghLFVxmFkKtUi0ZFXV7rXpWnhOFYvErhNZpwSgXSlelXL2exJEGe+AAHAEDVEAdXIIGaAIM7sADeALP2r32qL1or/PRlJbs7IIf0N4+AUn+ltg=</latexit>

{W+
i ,W�

i , Z0
i }, Ai

Claim: EWSB generates magnetic fields.



Electroweak Vacuum Manifold

The electroweak vacuum manifold is a three-sphere (S3).

<latexit sha1_base64="RgScI0czryoAjjxZ5yKtFCZ9BCQ="></latexit>

V (�) = �(|�|2 � ⌘2)2 = �(�2
1 + �2

2 + �2
3 + �2

4 � ⌘2)2

<latexit sha1_base64="Z2PLY41tNK0gHNpSS3b4NsWQ6C0="></latexit>

V (�) = 0 =) � 2 S3

S3 has no incontractable loops or two-spheres. So the
electroweak model has no strings or monopoles by this criterion.

<latexit sha1_base64="eeI8tmltodwhoBl6INkvgT19Ct4="></latexit>

⇡1([SU(2)L ⇥ U(1)Y /Z2]/U(1)Q) = 1

Assume that the VEV is homogeneous…



The Kibble Argument

but the VEV cannot be homogeneous….

Widely separated domains acquire VEVs independently.



Gradients

The gauge structure defines preferred orbits on the vacuum manifold.
(Like roads in the landscape.)

A point on the vacuum manifold. Points on the vacuum manifold
and paths connecting them.

Gradient terms must be included for inhomogeneous fields.



Electroweak Gauge Sector
It is better to think of the electroweak vacuum manifold as the
Hopf fibered form of S3. 

This is clearest in the semilocal limit: gL=0.

U(1)Y gauge orbits are circles on the S3.

Only pairs of points on these gauge orbits 
result in vanishing gradient energy.

Similarly, with gY=0, the gauge orbits are S2’s.



Electroweak Gauge Sector
In the standard model, gL=0.65 and gY=0.34, and there are 

preferred S2 and S1 orbits on the vacuum manifold.

Then the electroweak model has both magnetic monopoles and strings!

Nambu, 1977; TV, 1992

TV & Achucarro, 1991;
Gibbons, Ortiz, Ruiz & Samols, 1992;

Hindmarsh, Holman, Kephart & TV, 1993

<latexit sha1_base64="rIiVaEDsBeP6RTlfXGKox6efRgg=">AAACAHicbZBLS0JBFMfPtZfZy2rRos2QBK3k3jS97oQ2QRvDfIBXZe446uDcBzNzAxE3fZU2LYqoZR8j3PRB2jc+iF5/GPjxP+dw5vzdkDOpTPPdiC0tr6yuxdcTG5tb2zvJ3b2qDCJBaIUEPBB1F0vKmU8riilO66Gg2HM5rbmD82m9dkOFZIF/rYYhbXq457MuI1hpq508KLcyyJHMQ+XWKXIU86jUaLWTKTNtzoT+grWAVBE+XiaT2GWpnXxzOgGJPOorwrGUDcsMVXOEhWKE03HCiSQNMRngHm1o9LFe1BzNDhijY+10UDcQ+vkKzdzvEyPsSTn0XN3pYdWXv2tT879aI1Jduzlifhgp6pP5om7EkQrQNA3UYYISxYcaMBFM/xWRPhaYKJ1ZYhZCIW9nrby+vWCf5eaglcl8hVA9TVu5dPZKp2HDXHE4hCM4AQvyUIQLKEEFCIzhDh7g0bg17o0n43neGjMWM/vwQ8brJ5XemSM=</latexit>

S3 ⇠ S2 ⇥ S1

base manifold x fiber

Hopf fibration:



Electroweak monopoles

Electroweak monopole

Electroweak anti-monopole

Z-string
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Arrows indicate points on S2, colors indicate points on S1.



Monopole-string distribution
3

FIG. 2: Sample monopole distribution with strings connecting
them. Some of the strings are in the form of closed loops.

Then the action of R on �1 is equivalent to multiplication
by,

R = e
i(�1+�2+�3+h123) (12)

where h123 denotes the phase angle due to the rotation
D[R13]D[R32]D[R21]. This rotation implements the par-
allel transport of �1 all the way around the triangular
plaquette and gives the holonomy angle, h123, in this
process. To determine h123 we use

e
ih123 = �†

1D[R13]D[R32]D[R21]�1 (13)

From (11) we must have

�1 + �2 + �3 + h123 = 0, ±2⇡ (14)

and a value of ±2⇡ signals that a Z-string/anti-string
passes through the plaquette.

We have numerically implemented this algorithm to
study the distribution of monopoles and strings on a dis-
crete tetrahedral lattice. Each cell of a cubic lattice is
divided into 24 tetrahedra [3]. At every lattice point, we
assign random values of ↵, � and �, from which we con-
struct � and n̂. We find the monopoles on the lattice by
evaluating the monopole winding in (3) for every tetra-
hedral cell, and the strings are found by evaluating the
winding in (14) for every triangular plaquette. A sam-
ple of the monopole distribution with strings is shown in
Fig. 2.

As in earlier simulations of monopole formation [24–
26], n̂ is uniformly distributed on an S

2 and the mag-
netic charge within a volume, ⇠ L

3, is given by a surface
integral due to Gauss’ law, with N ⇠ (L/⇠)2 indepen-
dent domains of size ⇠ on the surface. Hence the root-
mean-square magnetic charge within the volume goes as

FIG. 3: Log-linear plot of number density of open strings
(blue) and closed strings (red) vs. length l. The parameters
of the dashed fitting curves are given in (15) and (16).

p
N ⇠ L/⇠. We have confirmed this scaling in our simu-

lations.
We also evaluate the length distribution of open string

segments, i.e. the number density of strings of length
between l and l +dl, denoted dnopen(l). The dependence
of dnopen(l) on l is shown in Fig. 3 and is fit by a decaying
exponential,

dnopen(l) = Aoe
�l/lo dl,

Ao = 0.12 ± 0.06, lo = 6.68 ± 0.28 (15)

where the length is measured in units of the step length
in going from one tetrahedral cell to its neighboring cell.
The number density of closed loops also follows an expo-
nential with,

Ac = 0.66 ± 0.07, lc = 7.79 ± 0.08. (16)

Just as in the case of topological defects, the Kib-
ble mechanism only provides initial conditions for the
evolution of the system. In the case of cosmic strings,
small loops formed during the symmetry breaking will
quickly collapse and dissipate, while longer loops and
infinite strings will persist and eventually reach a scal-
ing solution. In the electroweak case, monopoles and
anti-monopoles will be brought together by the con-
fining strings and rapidly annihilate [28]. However
their annihilation will leave behind a magnetic field.
Since Maxwell equations hold after electroweak symme-
try breaking, the magnetic field can then be evolved with
the usual Maxwellian magneto-hydrodynamical (MHD)
equations [29]. We now turn to a characterization of the
initial magnetic field.

The electromagnetic field strength is defined as

Aµ⌫ = @µA⌫ � @⌫Aµ

�i
2 sin ✓w

g
(@µ�̂†

@⌫�̂ � @⌫�̂
†
@µ�̂) (17)

Patel & TV, 2021



Fate of monopoles

Eventually all the monopoles and anti-monopoles annihilate
and leave behind the magnetic field.
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Fate of the network
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hBiV =
1

V

Z

V
d3xB = �i

2 sin ✓w
gV

Z

@V
dS⇥ (�̂†r�̂)

4

where Aµ ⌘ sin ✓wn̂
a
W

a

µ
+ cos ✓wYµ and the last term in

(17) is required for a suitable gauge invariant definition of
Aµ⌫ [11, 21]. The definition breaks down at points where
|�| = 0, i.e. in the symmetry restored phase, because n̂

and �̂ are not well-defined.
It is instructive to calculate the magnetic field strength

of the Nambu monopole for which the asymptotic fields
are

�m =
vp
2

✓
cos(✓/2)

sin(✓/2)ei�

◆
(18)

where ✓, � are spherical angles. The configuration is
singular at ✓ = ⇡ because of the Z-string attached to the
monopole. The magnetic field of the monopole is

B = r ⇥ A � i
2 sin ✓w

g
r�̂† ⇥ r�̂ (19)

With � = �m of Eq. (18) and A = 0 we find
the monopole magnetic field outside the core of the
monopole, Bm = sin ✓w r̂/(gr

2) where r is the radial
coordinate. Around the Z-string at ✓ = ⇡ we find
�̂m ! e

i�(0, 1)T . Using this form in (19) we see that
there is no electromagnetic field associated with the Z-
string at locations where � 6= 0. We can extend the
formula (19) to the point where � = 0 in the Z-string
by using continuity, and then the magnetic field vanishes
everywhere for the Z-string.

The usual characterization of stochastic isotropic mag-
netic fields is in terms of the two point correlators,

hBi(x + r)Bj(x)i = MN (r)(�ij � r̂ir̂j) + ML(r)r̂ir̂j

+✏ijkrkMH(r) (20)

In Maxwell theory, the correlation functions MN and ML

are related by the condition that the magnetic field is
divergence free,

1

2r

d

dr

�
r
2
ML(r)

�
= MN (r). (21)

In our case, however, the magnetic field is not divergence-
free and MN and ML are independent functions. The
helical correlator, MH , vanishes for us since we have not
included any source of parity violation in the system.

We have evaluated the magnetic field correlator nu-
merically and find

hBi(x + r)Bj(x)i = f(r)�ij (22)

with f(r) exhibiting anti-correlations at small scales.
This makes physical sense since it is known that defects
are preferentially surrounded by anti-defects [26].

Once the monopoles and antimonopoles have annihi-
lated, the correlator in (22) should revert to the form
in (20) with the standard divergence free condition. We
have not yet studied this evolution. Instead we use a

FIG. 4: Log-log plot of the smeared magnetic field strength,
B�, vs. �. The blue band shows the 1-� spread of the in-
dividual Monte Carlo results. The dashed line shows the fit
ln(B�) = (�2.02± 0.02) ln(�) + (0.98± 0.09).

“smearing procedure” to estimate the volume averaged
magnetic field due to monopoles,

hBiV =
1

V

Z

V

d
3
xB = �i

2 sin ✓w

gV

Z

@V

dS ⇥ (�̂†r�̂)

(23)
where the last expression for the surface integral follows
from using (19) together with an integration by parts.
Note that (19) assumes |�| 6= 0 and hence is not valid in
the interior of the integration volume V in the presence
of monopoles. The volume integral in (23) is ambiguous
because of the divergent magnetic field at the locations
of the monopoles. However the surface integral given in
(23) still applies as the surface of integration does not
intersect any monopole cores. The surface may intersect
Z-strings but the formula in (19) holds by continuity as
discussed below (19).

For the integration in (23) we will consider cubical vol-
umes with side �. If ⇠ denotes the size of domains in
which the random variable �̂†r�̂ is tightly correlated,
the discretized surface integral in (23) consists of a sum
of (�/⇠)2 independent random terms and the sum it-
self will go like the square root of this number. There-
fore we expect the magnitude B� ⌘ |hBiV | to grow as
B� / �/V / 1/�

2. We have numerically evaluated B�

and the result is plotted in Fig. 4. The fit shows indeed
shows that B� / 1/�

2.
An alternative approach to deriving the properties of

the magnetic field is to directly simulate the EWPT, as
has been done in several works [31–35]. These field the-
ory simulations are much more computationally intensive
than the present approach and are limited by computer
resources. On the flip side, an advantage is that they
more completely account for the dynamical evolution
during the symmetry breaking, including magnetic fields
that may be generated independently of the monopoles
(the Aµ terms in (17)).
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B(k) / k2or,

Monopole contribution to volume-averaged magnetic field:



Direct simulations of EWSB

Also, the discrete Fourier transform is given by

BiðKÞ ¼ ðΔxÞ3
XN−1

X¼0

BiðXÞ exp
!
þ2πi

K · X
N

"
ð32Þ

BiðXÞ ¼
1

L3

XN−1

K¼0

BiðKÞ exp
!
−2πi

K · X
N

"
: ð33Þ

III. NUMERICAL SIMULATION

As mentioned above, we follow the strategy in [21,45] to
evolve the electroweak EOMs on the lattice. Our code is
based on the LATFIELD2

2 library [50], and the linear algebra
operations are performed with the help of the EIGEN

3 library
[51]. Our simulations use periodic boundary conditions
and the dimensionless constants entering the EOMs are
fixed to their physical values: g ¼ 0.65, sin2 θw ¼ 0.22,
g0 ¼ g tan θw and λ ¼ 0.129. The spatial and time spacing
are chosen to be Δx ¼ 0.25, Δt ¼ Δx=4 ¼ 0.0625, respec-
tively. The dimensionful vacuum expectation value of the
Higgs, denoted by η, is 174.13 GeV. In our numerical code
we set η ¼ 1, so that ηΔx ¼ 0.25, and then mHΔx ¼
2

ffiffiffi
λ

p
ηΔx ¼ 0.18, where mH is the mass of the Higgs.

This choice of lattice spacing gives us enough resolution to
ensure that we capture all the dynamics. For instance, since
mHΔx ¼ 0.18, momenta of order mH are well resolved.
The bulk of our simulations is performed on a lattice with
size N ¼ 256, although we use a larger lattice for several
runs in Sec. IV. We denote by T the (integer) time step
number, and the physical time t is t ¼ TΔt.
The bubble profile function, Eq. (19), does not have any

free parameters and its tail has infinite extent, which we
truncate on the lattice as follows. We define the symmetric
phase to correspond to locations where jΦj ≤ 0.01η. With
this prescription, the “size”, r0, of the bubble turns out to be
ηr0 ¼ 9.0 (mHr0 ≈ 6.5), since the profile in Eq. (19) falls
below 0.01η for r > r0. With our lattice parameters, this
gives r0 to be 36Δx. We use this value to prevent the
nucleation of new bubbles within existing ones: a bubble
can only be nucleated at a particular site if all lattice points
within a distance r0 are still in the symmetric phase
(jΦj ≤ 0.01η). Once a bubble is nucleated, it will expand
and collide with other bubbles if there are any in the vicinity.
The expansion of a single bubble is shown in Fig. 1, while
Fig. 2 shows the evolution and collision of several randomly
generated bubbles.
Two additional inputs required for our runs are the Higgs

damping γ, defined in Eq. (3), and the nucleation probability
pB, which determines the probability of bubble nucleation
per lattice site per time step. These two parameters cannot be

determinedwithin themodelwe are considering, and thuswe
will compare the results by varying the two parameters. We
consider several values in the range 0 ≤ γ ≤ 0.01, including
the experimentally measured decay width of Higgs boson,
γ ∼ ΓHiggs ∼ 4.07 × 10−3 GeV [52], which corresponds to
γ ∼ 2.34 × 10−5 in our lattice units. pB is chosen to be in the
range 10−8 ≤ pB ≤ 10−3 in our simulations.
Since we are concerned with the generation of magnetic

fields during the electroweak phase transition, we need a
criterion to determinewhen thephase transition is completed.
Our strategy is to compute the minimum jΦj2 among all the
lattice sites at each time step. To avoid spurious fluctuations,
weworkwith the ten-stepmoving average of jΦj2min, denoted
as jΦj2MA10, and we stop the simulation at the first time step
Tstop when jΦj2MA10 > 0.25η2. In this manner, we ensure that
the Higgs field is away from the symmetric phase.
One caveat of our formalism is that our field equations

donot include the effects of other chargedparticles thatmight
be present or generated at the time of the phase transition.

IV. TEST RUNS WITH NONRANDOM BUBBLE
DISTRIBUTIONS

A single expanding bubble in our analysis does not
generate magnetic fields. This can be verified from the field
equations since the gauge field currents [right-hand sides of

FIG. 1. Two-dimensional slice showing the evolution of
jΦj2=η2 for one bubble at time step T ¼ 0 (left) and T ¼ 140
(right). Blue-colored regions correspond to jΦj ≪ η, red indicates
jΦj ≫ η, and jΦj ≈ η in the white regions.

FIG. 2. Two-dimensional slice showing the evolution of
jΦj2=η2 for randomly nucleated bubbles. The left panel is
at time step T ¼ 140 and the right panel at T ¼ 2000. Blue
colored regions correspond to jΦj ≪ η, red indicates jΦj ≫ η,
and jΦj ≈ η in the white regions.

2http://github.com/daverio/LATfield2
3http://eigen.tuxfamily.org
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and it grows by a factor of∼4 to reach ρB=m4
H ∼ 0.062 at the

end of our simulation (see Table II). Hence, the generation of
magnetic fields in the HO stage dominates over that in the
BC stage.
The plot of kmean and kpeak in Fig. 12 shows that the

magnetic energy has power on length scales that are
much larger than the particle physics scale m−1

H ≈ 6Δx.
For example, when γ ¼ 2.34 × 10−5, independent of pB,
kmeanΔx=2π converges to ∼0.04, equivalent to a wave-
length of mHλk ≈ 4.2. The power spectrum of the magnetic
field peaks at even larger length scales. From the plot of
kpeak we see that the peak moves to larger length scales
with time and at the end of our run, kpeakΔx=2π ≈ 0.011 for
all parameters. (The plot is jagged because of binning
effects.) This corresponds to a wavelength of λk ¼ 2π=k ¼
Δx=0.011 ≈ 91Δx (mHλk ¼ 15.2).

In Fig. 13 we show the energy spectrum of the magnetic
fields at the end of our simulation for γ ¼ 2.34 × 10−5 and
pB ¼ 10−6. A peak is clearly seen in Fig. 13 and its location
is largely independent of the parameters we varied in this
paper. We conducted several runs on large lattices to test
if the peak is due to finite lattice size and always found
the peak indicating the same wavelength, independent of
the lattice size. Further study is needed to determine what
parameters control the location and height of this peak.

FIG. 12. Plots of the results from Higgs-oscillation stage (HO stage) simulations. (Top left) kmeanΔx=2π as a function of time mHt.
(Top right) kpeakΔx=2π as a function of timemHt. (Bottom) Energy density of magnetic field, ρB, as a function of timemHt. The legends
are the same for the three plots, and are only shown on the bottom plot.

FIG. 13. Spectrum of the magnetic field at T ¼ 100000 for a
configuration with γ ¼ 2.34 × 10−5, pB ¼ 10−6.

TABLE II. Magnetic energy density at t ∼ Tstop and at the end
of our simulation.

γ pB ρB;BC=m4
H ρB;HO"=m4

H

2.34 × 10−5 10−4 0.016 0.062
2.34 × 10−5 10−6 0.016 0.060
2.34 × 10−5 10−7 0.015 0.060
1.00 × 10−2 10−6 0.0075 0.037

ZHANG, VACHASPATI, and FERRER PHYS. REV. D 100, 083006 (2019)
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Magnetized Universe

Fractional cosmic energy density in magnetic fields:

with spectrum:
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⌦B(tEW ) ⇠ 1%

Standard model of particle-cosmology predicts 
a magnetized Universe.
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of the main results, ignoring the finer points and focusing
on magnetic field spectra that fall o↵ on large length
scales, EM / k

n with n > 0, and peak on some small
length scale.

A. Sketch of magnetic field evolution17

Initial conditions: Stochastic, statistically isotropic
magnetic fields are described by two spectra, EM (k, t)
and HM (k, t). Any mechanism for generating magnetic
fields should provide these functions at the initial time.
Additionally, the velocity field is also described by two
spectra: the power spectrum and the kinetic helicity
spectrum. Even though the set of initial conditions that
have been studied is not exhaustive, the results give a
fairly good idea of what to expect from MHD evolution.
Ref. [169] also discusses magnetic field evolution through
cosmological events such as e

+
e
� annihilation, recombi-

nation, dissipation, etc. while Ref. [195] considers non-
vanishing kinetic helicity as an initial condition.

Non-helical evolution: First consider the case of non-
helical magnetic fields, HM (k) = 0, and vanishing ve-
locity field at the initial time. The magnetic field will
induce fluid flow and turbulence, and the full non-linear
system of equations (64), (65) and (66) has to be solved.
This setup is called “magnetically dominated decaying
MHD turbulence” or “freely decaying MHD turbulence”.
The detailed evolution of the magnetic power spectrum
depends on the initial conditions. However, the general
features of the evolution can be sketched as in Fig. 14.
The peak of the spectrum at the inertial scale, kin, moves
to smaller k for two reasons: first, the power on small
length scales dissipates more e�ciently, and second, there
is a weak inverse cascade that actually shifts the peak to
smaller k [190, 199]. These factors lead to

kin(⌘) / ⌘
�1/2

, nonhelical case. (72)

The k-dependence of the spectrum for k < kin(⌘) depends
on the initial conditions. With EM / k

p at the initial
time for small k where p � 4, the spectrum evolves to
the Batchelor spectrum, EM / k

4 (see [187] and the
Supplemental Material to [190]). For p = 2, called “non-
helical white noise spectrum”, the simulations in [196]
do not find an inverse cascade and the spectrum stays
EM / k

2 even upon evolution. This suggests that for
the non-helical case and with p < 4, the power spectrum
will remain EM / k

p even with evolution.
The non-helical inverse cascade has been examined

critically in [197]. It is found that the inverse cascade
depends on the Prandtl number, defined as the ratio of

17
In the remainder of this section, unless otherwise stated, all quan-

tities refer to their comoving values.

ln(k)

ln(EM(k))

kin,0 kdiss,0

�0

�1

�2

FIG. 14: The evolution of the comoving power spectrum of
non-helical magnetic fields shown at three (conformal) times
⌘0 < ⌘1 < ⌘2. The peak of the spectrum dissipates and also
moves to smaller (comoving) k in proportion to ⌘�1/2. As
a result the power on large length scales increases in what is
termed a “non-helical inverse cascade”. The spectrum evolves
to EM / k4 at small k for a broad range of initial conditions
in which EM / kp with p � 4 at the initial time.

the viscosity and magnetic di↵usivity, and decreases in ef-
ficiency as the Prandtl number increases. Ref. [197] sug-
gests that the non-helical inverse cascade may be com-
pletely suppressed at the Prandtl numbers relevant to
cosmology (⇠ 108(T/keV)�3/2).

If initially the velocity field does not vanish, and is
perhaps helical, the evolution can be more involved. For
example, in case of initial kinetic helicity, the magnetic
field can develop helicity that is opposite to the kinetic
helicity on large length scales. The conservation of total
helicity then implies compensating magnetic helicity on
short length scales [195].
Helical evolution: A general feature is that magnetic

fields evolve towards “maximal helicity” (see (22)), while
total helicity stays conserved. This means that HM (k)
evolves non-trivially with time while its integral over all
k stays constant. To approach maximal helicity EM (k)
evolves so that

EM (k, ⌘) !
k

2
|HM (k, ⌘)| (73)

Once the field achieves maximal helicity, it stays maxi-
mally helical, while power (and helicity) is transferred to
larger length scales in an inverse cascade as depicted in
Fig. 15 where the whole spectrum simply shifts to the left.
This feature can be seen using the conservation of mag-
netic helicity. We take the form of the time-dependent
power spectrum to be

EM (k, ⌘) = E(⌘)

✓
k

kin(⌘)

◆n

, 0  k  kin(⌘) (74)

where n > 0 is left unspecified. (The power for k > kin

can be included but we ignore it here.) Assuming that

Non-helical
21

ln(k)

ln(EM(k))

kin,0 kdiss,0

�0
�1

�2

FIG. 15: The evolution of the comoving power spectrum of
helical magnetic fields at three di↵erent times ⌘0 < ⌘1 <
⌘2. The peak of the spectrum moves to smaller comoving
k but does not dissipate once the field becomes maximally
helical. As a result the power on large length scales increases
in what is termed an “inverse cascade”. The spectrum evolves
to EM / k4 at small k for a broad range of initial conditions
in which EM / kp with p � 4 at the initial time.

the helicity is the same sign for all k, maximal helicity
implies

HM (k, ⌘) =
2

k
EM (k, ⌘) =

2

k
E(⌘)

✓
k

kin(⌘)

◆n

. (75)

The total helicity is conserved,

constant =

Z
kin

0
dk HM (k, ⌘) =

2

n
E(⌘) (76)

Therefore E is a constant and the peak of the power spec-
trum at k = kin(⌘) does not dissipate. The energy density
defined in (19) decays with time as kin(⌘) which has been
determined by simulations [179, 186],

kin(⌘) ⇠ kin(⌘0)

✓
⌘0

⌘

◆2/3

, helical case (77)

where ⌘0 is the initial conformal time. The 2/3 expo-
nent in the helical case should be contrasted with the
1/2 exponent in the non-helical case given in (72).

As in the non-helical case, the evolution leads to EM /

k
4 if initially EM / k

p with p � 4. In simulations with
magnetic fields that are initially helical with white noise
spectrum (p = 2), the spectrum evolved to EM / k

4 once
the field became maximally helical, suggesting that the
Batchelor spectrum is an attractor (see Run G in [196]).

B. Dissipation and the integral scale

The dissipation of perturbations overlaid on a smooth
cosmological magnetic field, taking into account the cos-
mological plasma and the neutrino and photon fluids,

has been studied in Ref. [173]. The perturbations can be
decomposed into plasma Alfvén and magnetosonic (fast
and slow) modes. These modes will propagate and in-
teract with neutrinos prior to neutrino decoupling, and
with photons prior to recombination, and will damp out
the perturbations on small wavelengths. The damping
length scale depends on the particular excitation mode,
the epoch of interest, and the strength of the background
magnetic field.

The framework of a perturbation on a smooth back-
ground magnetic field as adopted in [173] is not directly
relevant to the case of magnetic fields generated at phase
transitions. Instead we are interested in power spectra
that are peaked on small length scales, e.g. EM / k

3. In
this case, Banerjee and Jedamzik [169] estimate the “in-
tegral” scale of the spectrum – the length scale on which
the spectrum is peaked – in the turbulent regime and
also in the viscous regime in which fluid flow experiences
a drag due to free streaming particles such as neutrinos
and photons. The comprehensive analysis of [169] also
places MHD evolution in a cosmological setting, taking
account various cosmological episodes such as neutrino
decoupling, e

+
e
� annihilation, Hydrogen recombination,

and the transition from radiation to matter domination.
The picture developed in Ref. [169] is that there is a

direct (Kolmogorov) cascade of energy for length scales
smaller than the integral scale, L, and as modes with
length scale just below L lose their energy, the peak of the
spectrum shifts to longer length scales, i.e. the integral
scale L grows. Based on a combination of analytical and
numerical techniques, they argue that the integral scale
can be estimated by equating the turnover timescale for
eddies on the integral scale to the Hubble time,

v(L)/L ⇡ H (78)

where v(L) is the fluid velocity on the integral scale L.
In the turbulent regime, v(L) ⇡ vA, the Alfv́en velocity
defined by vA = B/

p
4⇡(⇢ + p) where ⇢ and p are the

energy density and pressure of the fluid. In the viscous
regime, v(L) ⇡ RevA where Re is the Reynolds number
evaluated with the Alfv́en velocity. An important out-
come of this analysis is that the magnetic field strength
at the present epoch is related to the integral scale today,

B0 ⇡ 5 ⇥ 10�12 G

✓
L0

1 kpc

◆
. (79)

Their final estimate for the integral scale for magnetic
fields generated at the EWPT depends on the initial mag-
netic power spectrum and the magnetic helicity, and lies
in the 0.1 pc to 10 kpc range (see Figs. 12-15 in [169]).
For maximally helical fields with 1% of the total energy
density and with EM / k

2 at the EWPT, they esti-
mate the comoving integral length scale to be ⇠ 10 kpc,
whereas for non-helical fields it is ⇠ 1 pc. The magnetic
field strength at the integral scale can then be evaluated
using (79).

The evolution of cosmological magnetic fields eventu-
ally becomes entangled with the formation of cosmologi-

Helical
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helicity ⇠ B ·r⇥B

CASE 1

CASE 2

CASE 3

CASE 4

CASE 5

CASE 1

CASE 2

CASE 3

CASE 4

CASE 5

Figure 2. The five magnetic field configurations that we consider. Cases 1-3 are homogeneous field configura-
tions that have different orientations with respect to the line of sight with the blazar. Cases 4-5 are helical field
configurations with their wavevectors oriented either along or normal to the line of sight.

4.2 Case 2: Uniform Magnetic Field Normal to Line of Sight
Next we consider a homogeneous magnetic field that is oriented normal to the line of sight with the
blazar (see Fig. 2). Without loss of generality we can align the Cartesian coordinate system with the
magnetic field such that

B̂ = ŷ = sin � ⇢̂ + cos � �̂ . (4.4)

and Eqs. (3.17)-(3.19) reduce to

sin � cos(�/2 � ✓) = 0 (4.5a)

sin ✓ =
d�0
ds

sin � (4.5b)

1 � cos � =
⇣
1 � sin2(� � ✓) sin2 �

⌘⇣
1 � cos(De/R)

⌘
. (4.5c)

For a given gamma ray energy E� there is a solution

� = 0, ⇡ , sin ✓ =
d�0
ds

sin � , and cos � = cos
De

R
(4.6)

where E� enters through d�0/ds and De/R, see Eqs. (2.10) and (2.11). Recall that De/R > 0 is
unbounded from above but 0  �  ⇡ and 0  ✓  ⇡/2. For this magnetic field configuration, the
trajectories of all the gamma rays lie in the y = 0 plane where � = 0, ⇡. In the limit of small lepton
deflection, De/R ⌧ 1, the solution further simplifies to

✓ ⇡ ⇥ext =
d�0De

dsR
(4.7)
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From electroweak epoch to now
Hosking & Schekochihin (2203.03573): 
• helicity fluctuations are important even for non-helical fields and “helicity 

Loitsyansky integral” is an invariant.
• field decay on small scales is governed by reconnections.

<latexit sha1_base64="RLi2ZJXDqewBY2tIvQBYX6HJP+U=">AAACDHicbVDLSgMxFM34rPVVdSlIsAiuyoyttl1ZdOOyglWhUyWTphqaZIbkjlCGLl248VfcuKiILv0Ad36DP2E6FfF1IHA451xu7gkiwQ247pszNj4xOTWdmcnOzs0vLOaWlo9NGGvKGjQUoT4NiGGCK9YADoKdRpoRGQh2EnT3h/7JFdOGh+oIehFrSXKheIdTAlY6z+X3zkrYF3agTc62sW+4xD5OfC0xDZUBoqBvU27BTYH/Eu+T5HefB4fv12uD+nnu1W+HNJZMARXEmKbnRtBKiAZOBetn/diwiNAuuWBNSxWRzLSS9Jg+3rBKG3dCbZ8CnKrfJxIijenJwCYlgUvz2xuK/3nNGDqVVsJVFANTdLSoEwsMIR42g9tcMwqiZwmhmtu/YnpJNKFg+8umJVTLlZJXtrdXK9s7I2JRLH6VcLxV8HYKpUM3X6ugETJoFa2jTeShMqqhA1RHDUTRDbpDA/Tg3Dr3zqPzNIqOOZ8zK+gHnJcPFiCfIQ==</latexit>

B4�5 ⇠ constant

3

�� 0 �
x

�

0

��

y

Figure 2. Slice of magnetic-helicity density from a simulation of decaying non-helical MHD turbulence.
The turbulence breaks up into patches of positive and negative helicity h (computed in the Coulomb gauge; r · Ã = 0),
shown in red and blue, respectively. The invariance of IH (see main text) is a manifestation of the conservation of the net
magnetic-helicity fluctuation level arising in large volumes. Because of the complex magnetic-field topology, the rate-setting
process for the decay is magnetic reconnection: reconnection sites, indicated in the figure by patches of large current density
|r⇥ B̃| (black; variable opacity scale), typically form between the helical structures. See Methods for details of the numerical
setup.

therefore no reason to suppose that the small-k asymp-
totic of EM (k) evolves on a longer timescale than the
dynamical one of �B-scale structures (if this is long com-
pared to the magnetic-di↵usion timescale at scale �B ,
then selective decay is valid, as the simulations of [20, 25]
confirm, but this is not the regime relevant to PMFs).

Instead, we propose that the decay of PMFs is con-
trolled by a di↵erent integral invariant [7]:

IH =

Z
d3r hh(x)h(x + r)i, (11)

where h = Ã · B̃ is the helicity density (B̃ = r ⇥ Ã).

Eq. (11) is equivalent to

IH = lim
V !1

1

V

*Z

V

d3xh(x)

�2
+

= lim
V !1

hH2
V

i
V

, (12)

where HV is the total magnetic helicity contained within
the control volume V . The invariance of IH can therefore
be understood intuitively as expressing the conservation
of the net mean square fluctuation level of magnetic he-
licity per unit volume that arises in any finite volume
of MHD turbulence (see Fig. 2; we refer the reader con-
cerned about the existence of such fluctuations to Section
B of the Supplementary Information). From IH = const,
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Figure 3. Reconnection-controlled decay of non-helical PMFs. As in Fig. 1, purple regions denote values of B̃ and �B

excluded on physical or observational grounds [Eq. (1)]. Under decays that conserve IH [Eq. (11)], B̃ and �B evolve along
lines parallel to the ones shown in blue. The predicted values of modern-day B̃ and �B are given by the intersection of these
lines with Eq. (8) evaluated at recombination [represented by lines (i-v), which are derived in Methods], with ⌧ the prevailing
decay timescale. The blue-gold line shows the locus of possible present-day states resulting from reconnection-controlled decays
on the timescales explained in the main text, assuming that the microscopic viscosity of the primordial plasma was controlled
by collisions between protons. The e↵ective value of Pm in Eq. (14) might have been heavily suppressed when B̃ > B̃iso if
viscosity were then instead governed by plasma microinstabilities — the red-gold line shows the locus of modern-day states
corresponding to the extreme choice of Pm . 1 for B̃ > B̃iso. In either case, we see that PMFs generated at the EWPT with
a wide range of values of IH produce modern-day relics that are consistent with Eq. (1), and even with the stronger version of
this constraint [see text below Eq. (1)] which is indicated by the pale purple region.

in Methods], which represents Eq. (8) with ⌧ = ⌧rec

given by Eq. (14) and Pm ⇠ (rL/�mfp)2PmSp. For
IH & 10�2IH, max, the states on line (ii) have �c < di, rL

[see Eqs. (46) and (47) in Methods], so Eq. (14) is in-
valid for them. These decays pass through line (ii) at
some time before recombination with timescale given by
Eq. (17). However, they do access the domain of validity
of Eq. (14) if, before trecomb, B̃ becomes small enough
for �c to be comparable with relevant kinetic scales.
When that happens, their timescale becomes much larger
than trecomb so further decay is prohibited — these de-
cays all terminate with B̃ ⇠ 10�11G, which corresponds
to �c ⇠ di at trecomb [see Eq. (46) in Methods]. Decays
with IH & 108IH, max are radiation-drag limited at re-
combination [line (iv); Eq. (55) in Methods].

The EGMF parameters represented by the
blue-gold line are consistent with Eq. (1)

for IH & 10�23IH, max, i.e.,


B̃(t⇤)

10�5.5 G

�4 
�B(t⇤)

10�10 Mpc

�5

& 10�23. (20)

The relic of a field with �B(t⇤) ⇠ 10�2 rH(t⇤)
⇠ 10�10 Mpc at the EWPT would therefore be consis-
tent with Eq. (1) if ⇢̃B(t⇤) & 10�6.5⇢̃�(t⇤). This confirms
the assertion in the title of this Letter. Intriguingly, if
instead ⇢̃B(t⇤) ⇠ ⇢̃�(t⇤) and �B(t⇤) & 10�2rH(t⇤), then
we find B̃ ⇠ 10�11 G at recombination. PMFs of this
strength can explain the ⇠ µG magnetic fields in galaxy
clusters without requiring dynamo amplification [13] and
are also considered a promising candidate to resolve the
Hubble tension [11, 12].

Finally, we note that, for B̃ > B̃iso, the e↵ective values
of ⌫̃ and ⌘̃ might be dictated by plasma “microinsta-

Blazar lower bounds:
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B1Mpc & 10�19 � 10�16 G



Conclusions
• Observations indicate a magnetized Universe.

• Standard Model of particle physics predicts a magnetized Universe.

• Evolution of primordial magnetic fields opens up new problems in 
plasma physics (conservation of helicity fluctuations, chiral 
phenomena…). 

• Primordial magnetic fields imply new astro and cosmological effects 
(inhomogeneous recombination, blazar halos, magnetic fields in 
structures,…).

PPC Power!
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e±�CMB ! e±�GeV

EBL=“extra-galactic background light”
CMB=“cosmic microwave background”

<latexit sha1_base64="XfIG+qDKKtSk7Y3SJ2EnIudKJ0c=">AAACDHicbVDLSgMxFL1TX7W+qi7dBIsgiGVGFF2WiuDCRQX7gM5YMmmmDU1mhiQjlKEf4MZfceNCEbd+gDv/xrSdhbYeuORw7rnc3OPHnClt299WbmFxaXklv1pYW9/Y3Cpu7zRUlEhC6yTikWz5WFHOQlrXTHPaiiXFwue06Q8ux/3mA5WKReGdHsbUE7gXsoARrI3UKZbcHhYCo+nTSV0p0FX1ZoRcHSF6f2Tq2Ljssj0BmidORkqQodYpfrndiCSChppwrFTbsWPtpVhqRjgdFdxE0RiTAe7RtqEhFlR56eSYETowShcFkTQVajRRf0+kWCg1FL5xCqz7arY3Fv/rtRMdXHgpC+NE05BMFwUJR+bQcTKoyyQlmg8NwUQy81dE+lhiok1+BROCM3vyPGmclJ2zsn17WqpUszjysAf7cAgOnEMFrqEGdSDwCM/wCm/Wk/VivVsfU2vOymZ24Q+szx9uFpnt</latexit>

��EBL ! e+e�

pair production (threshold effect)

TeV

inverse Compton scattering
(from 10-4 eV to 109 eV)



Origin of helicity?
Requires strong Parity (P) & Charge Conjugation+Parity 

(CP) violation in the early Universe.
(As does the cosmic matter-antimatter asymmetry.)

Twist in the system leads
to magnetic helicity

and to baryon number
when monopoles annihilate.

Using known cosmic baryon number leads to
a very small amount of magnetic helicity.


