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Introduction

o Magnetic fields are detected at different scales in the universe.
e In particular, the origin of uG fields in galaxies is unknown.

@ The origin can be:
@ during inflation
@ during early universe phase transitions
@ from amplification of fields by galactic dynamos.

@ Scenarios ‘1’ and ‘2’ generate primordial magnetic fields (PMFs) — nG
scale PMFs at Mpc scales are adiabatically compressed to G scale fields
in galaxies.

e PMFs are an attractive scenario to explain the uniform distribution of
magnetic fields in voids.
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Inflationary Magnetogenesis

e PMFs arise from vacuum fluctuations during inflation.
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@ Involves the breaking of conformal symmetry — typically couplings like
RMPOE, Fpy or f(P)F, FH*.
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Inflationary Magnetogenesis

e PMFs arise from vacuum fluctuations during inflation.

o Inflationary PMF's have very large correlation lengths.

Involves the breaking of conformal symmetry — typically couplings like
RMPOE, Fpy or f(P)F, FH*.

Scale invariant (or nearly) PMF power spectrum.
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Phase Transition Magnetogenesis

@ An out of equilibrium, first-order transition is typically needed.
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Phase Transition Magnetogenesis

@ An out of equilibrium, first-order transition is typically needed.
e Violent bubble nucleation and collisions generate significant turbulence.

e Two main phase transitions are:

@ Electroweak Phase Transition (7' ~ 100 GeV)
@ QCD “Phase Transition” (7' ~ 150 MeV)

o In the Standard Model, these are not first-order; some beyond-SM
extensions can make them so.
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Phase Transition Magnetogenesis

An out of equilibrium, first-order transition is typically needed.
e Violent bubble nucleation and collisions generate significant turbulence.

e Two main phase transitions are:

@ Electroweak Phase Transition (7' ~ 100 GeV)
@ QCD “Phase Transition” (7' ~ 150 MeV)

o In the Standard Model, these are not first-order; some beyond-SM
extensions can make them so.

@ No evidence for any of these models so far.
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Magnetic Fields in Galaxies

@ Scale invariant PMFs (Bgr) above 0.1 nG on Mpc scales are adiabatically
compressed to pG fields in galaxies.
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@ Scale invariant PMFs (Bgr) above 0.1 nG on Mpc scales are adiabatically
compressed to pG fields in galaxies.

o This is because of magnetic flux conservation:

0.1nG = 1 uG x (10kpe/1 Mpc)?

Detecting Bsr > 0.1 nG will be evidence of inflationary PMF's.

e More importantly, it will be a compelling evidence of inflation!!!
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Magnetic Fields in Galaxies

@ Scale invariant PMFs (Bgr) above 0.1 nG on Mpc scales are adiabatically
compressed to pG fields in galaxies.

o This is because of magnetic flux conservation:

0.1nG = 1 uG x (10kpe/1 Mpc)?

@ Detecting Bsy > 0.1 nG will be evidence of inflationary PMFs.
e More importantly, it will be a compelling evidence of inflation!!!

o If Bgr is constrained below 0.1 nG, inflation isn’t the primary source of
galactic fields.
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Constraining PMFs via the CMB

e PMFs induce T, E, and B anisotropies in the CMB through perturbations
in the spacetime metric and Lorentz force in the primordial plasma.
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e PMFs just after recombination also rotate the plane of polarization of
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Constraining PMFs via the CMB

e PMFs induce T, E, and B anisotropies in the CMB through perturbations
in the spacetime metric and Lorentz force in the primordial plasma.

e The CMB spectra scale as B*.

e PMFs just after recombination also rotate the plane of polarization of
CMB — anisotropic birefringence or Faraday rotation.

e This scales as B2.

e Birefringence can thus provide a tighter bound on the PMF strength from
future surveys.
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Realistic PMF Spectrum

o PMF constitute a Gaussian random field in three dimensions —
characterized by the power spectrum Ppg(k).
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o We use this to theoretically calculate the anisotropic birefringence.
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Birefringence Forecasts

e From the rotation angle a(n), we get a power spectrum,
(a(B)a (i) = ¥,(21 + 1)CF B( - i) /4.
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Birefringence Forecasts

e From the rotation angle a(n), we get a power spectrum,

(a(m)a(n’)) =>",(204+1)Cp* P(n-n')/4x.

e The corresponding amplitude is A, = (I +1)C*/2m.
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Birefringence Forecasts

e From the rotation angle a(n), we get a power spectrum,

(a(B)a()) = 3,(20 + 1)CP* Pl - ) /Am.
e The corresponding amplitude is A, = (I +1)C*/2m.

@ The error bars on A, are computed for future CMB experiments.

| SO CMB-S4  CMB-HD
o(Aa) (deg?) | 24x107% 65x1076 1.4 x 1076
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Birefringence Forecasts (Contd.)

o We get the following constraints on o(A,) and consequently on Bg:

| SO CMB-S4  CMB-HD
o(Aq) (deg?) 24x107% 65x1076 1.4x10°°
o(Bsr) (nG) 0.47 0.08 0.036
SNR for Bg; = 0.1 nG 0.2 1.25 3
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Birefringence Forecasts (Contd.)

o We get the following constraints on o(A,) and consequently on Bg:

| SO CMB-S4  CMB-HD
o(Ay) (deg?) 24x107* 65x107% 1.4 x 1076
o(Bsi) (nG) 0.47 0.08 0.036
SNR for Bg; = 0.1 nG 0.2 1.25 3

o Current best constraints on o(Bgy) comes from Planck and SPT analysis
of CMB spectra! — o(Bs1) = 1.2nG.

1Pogosian et al., arXiv: 1904.07855, Phys. Rev. D 100.2.
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Birefringence Forecasts (Contd.)

o We get the following constraints on o(A,) and consequently on Bg:

| SO CMB-S4  CMB-HD
o(Ay) (deg?) 24x107* 65x107% 1.4 x 1076
o(Bsi) (nG) 0.47 0.08 0.036
SNR for Bg; = 0.1 nG 0.2 1.25 3

o Current best constraints on o(Bgy) comes from Planck and SPT analysis
of CMB spectra! — o(Bs1) = 1.2nG.

e CMB-HD will improve the bound on A, by four orders of magnitude —
giving tightest constraints on PMFs.

1Pogosian et al., arXiv: 1904.07855, Phys. Rev. D 100.2.
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Forecasts on PMFs
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Subtracting Milky Way Birefringence

e MFs in our galaxy lead to CMB Birefringence of A, ~ 1075 deg?, similar
to O(0.1 nG) PMFs.
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e Independent MW-induced birefringence obtained from the (1) of 40,000
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Subtracting Milky Way Birefringence

e MFs in our galaxy lead to CMB Birefringence of A, ~ 1075 deg?, similar
to O(0.1 nG) PMFs.

e We thus need to subtract the birefringence caused by the MW.

e Independent MW-induced birefringence obtained from the (1) of 40,000
extragalactic radio sources near the MW (NVSS Catalog).

e «a(n) is measured at multiple frequencies, giving a precise map of the MW
birefringence.
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Milky Way RM Spectra

10%¢ w
3 PMF=1nG
. 10° ;-,.xH’I‘hHﬁ%@ﬂ
NE Planck,70GHz
% L
£ 10%¢ I
— Efa=0.4. :
8
Q' 10
T F
+ ; | |
T 1oL ]
-
107 | |
10 100
L

(De et al., Phys. Rev. D 88.6.)
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Milky Way RM Spectra

10%E w E
P LI o We can estimate the

o 10° ?“T-~H’HHHLI%I@ gy E galactic MF strength and
£ Planck.0GHz ] the associated error for the
£ 10%¢ cleanest 40% of the sky.
g ;'ky=0'4v I
o 10 o We infer the galactic MF
b ] - to have oy, ; ~ 0.006 nG.
g 10°1

10 | |

10 100
L

(De et al., Phys. Rev. D 88.6.)

Sayan Mandal (Stony Brook) C 202 "1 June, 2022 12 /14



Milky Way RM Spectra
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jm—— PMP=1nG 1 o We can estimate the
o 10° ;\]-HHHIHI%%IE e E galactic MF strength and
£ Planck.0GHz ] the associated error for the
£ 10? 3 I cleanest 40% of the sky.
— [f,,=0.4
B
QN L
o 10 o We infer the galactic MF
b ; - to have oy, ; ~ 0.006 nG.
= 100k
1§\ ] e The MW birefringence
10 1‘0 160 can thus be subtracted
L from the CMB
(De et al., Phys. Rev. D 88.6.) measurement!!

| SO CMB-S4 CMB-HD
o(Bsi) (nG) | 047 0.08 0.036
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Discussion

@ The current 95% CL upper bound on Bgy is 1.2nG — comes from the
Planck TT, EE, and TE, and SPT BB data.

e A, measurements from CMB-S4 and CMB-HD will tighten it to 0.16 nG
and 0.072 nG respectively.

@ The CMB-HD bound is below the 0.1 nG threshold that distinguishes
between purely inflationary and dynamo origins of galactic MFs.

e Detection of Bg; < 0.1 nG will point to a dynamo origin of galactic MFs.
e Detection of Bgr > 0.1nG will be a compelling evidence for inflation!

o CMB-HD is capable of detecting inflationary PMFs at 3¢ significance.
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PMF's and the H; Tension

@ 5o discrepancy between local and high redshift measurement of Hy.
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PMF's and the H; Tension

@ 5o discrepancy between local and high redshift measurement of Hy.

@ Supernova measurements give Hy = 73.04 &+ 1.04 km/s/Mpc, while CMB
measurements lead to Hy = 67.4 £ 0.5km/s/Mpc.

o Pre-recombination PMFs lead to baryon clumping on kpc scales?.

2Jedamzik & Saveliev, arXiv:1804.06115, Phys. Rev. Lett. 123.2.
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@ Supernova measurements give Hy = 73.04 &+ 1.04 km/s/Mpc, while CMB
measurements lead to Hy = 67.4 £ 0.5km/s/Mpc.

Pre-recombination PMFs lead to baryon clumping on kpc scales?.

@ These inhomogeneties cause recombination to happen earlier, reducing
the sound horizon and increasing Hg3.

2Jedamzik & Saveliev, arXiv:1804.06115, Phys. Rev. Lett. 123.2.
3Jedamzik & Pogosian, arXiv:2004.09487 Phys Rev. Lett.c125.18
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PMF's and the Hj T

50 discrepancy between local and high redshift measurement of Hy.

@ Supernova measurements give Hy = 73.04 &+ 1.04 km/s/Mpc, while CMB
measurements lead to Hy = 67.4 £ 0.5km/s/Mpc.

Pre-recombination PMFs lead to baryon clumping on kpc scales?.

@ These inhomogeneties cause recombination to happen earlier, reducing
the sound horizon and increasing Hg3.

@ A ~ 0.1nG PMFs before recombination is enough to resolve the Hubble
tension.

2Jedamzik & Saveliev, arXiv:1804.06115, Phys. Rev. Lett. 123.2.
3Jedamzik & Pogosian, arXiv:2004.09487 Phys Rev. Lett.c125.18
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Modeling Inflationary PMFs

@ The comoving magnetic field B is a Gaussian random field in three
dimensions.

o Information about the energy of PMFs is encapsulated in the power
spectrum Pp(k); magnetic helicity does not affect birefringence.

o Traditionally written as
Pp(k) = Apk™?, k<kp (1)

for some damping scale kp; For inflationary PMFs ng = —3

e We set kp to the Silk damping scale 2Mpc™'; PMFs on scales smaller
than these have net rotation.

Sayan Mandal (Stony Brook) T 2027 70 June, 2022



The Birefringence Spectrum

e From the rotation angle a(n), we get a power spectrum,
(a(R)a(@)) = X,(20 + 1)CP* Pi(h - ) /4.

@ The amplitude of anisotropic birefringence is

0+ Cpe B

A
o 2T Vg

for frequency vy of observation.

e For a scale-invariant PMFs, A,, is independent of [ in the multipole region
of interest.
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The Birefringence Spectrum (Contd.)

e However, A, is frequency dependent, and CMB surveys observe at two
frequencies.

e Since A, x 1 4 we can construct an effective frequency for our

theoretical prediction,
1 1/1 1
[ . 3
Vot 2(”11+V§> ®)

o Equivalent to taking an arithmetic mean of the measurements on the
channels — assuming equal noise levels.

@ For the channels of 90 and 150 GHz, we find veg = 103.8 GHz.
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Birefringence Forecasts

Experiment ‘ White noise Beam  fqy Delensing Fraction
SO-SAT 3 uK’ 17 0.1 0.3
CMB-54 2 uK’ 2/ 0.5 0.15
CMH-HD 0.7 uK’ 0.4’ 0.5 0.1

The error bars on A, are computed as:

where Cl(m’ﬁd

Multipole ranges of 100 < I < 5000 are used for this calculation.

Sayan Mandal (Stony Brook)

1
*(Aa)

Z fsky

PPC

2022

21 + 1 (Cpfid)2

Nlaa)Q ’

=27/l(l + 1) and N/ is the reconstruction noise spectrum.
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Subtracting Milky Way Birefringence (Contd.)

@ At our effective frequency veg = 103.8 GHz, we have

A 2
o -7 RM 2
A, = 2.363 x 10 <1 rad/m2> deg?, (5)
where Ay, = 1(1+1)CFM/2m ~ Agy.

® 042 - comes from both sample variance and measurement uncertainty.

o For the cleanest 40% of the sky, the galactic contribution is
Afog g = 7017917 (rad /m?)?.

. . ~ 2
e The associated error is oAz, , ~ 0.7 A -
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Subtracting Milky Way Birefringence (Contd.)

o Agy is related to Bgy as Agy = 68 rad/m? (Bgr/1nG).

o The Galactic Aryr ~ v/70rad/m? ~ 8rad/m? gives Bsi g ~ 0.12nG on
Mpc scales.

@ SNR for detecting MW-induced Agyy is

(;)2 => (AELM’ZY ~ 262 (6)

g
l AzRM,l

o This is likely optimistic — we have ignored covariance between the o Az,

o Let’s be conservative and take SNR = 10 — this gives
O g, ~ 0.4rad/m?, and thus o, ; =~ 0.006 nG.
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