

T-RAX: transversely resonant axion experiment

Novel experiment for postinflationary axion dark matter, arXiv: 2203.15487

<u>Chang Lee</u>, Olaf Reimann, Max Planck Institute for Physics

Motivation **QCD** axion **DM**

- PQ symmetry to solve the strong CP problem
 - Spontaneous symmetry breaking @ f_A : axion
- well-motivated wave CDM candidate
 - Non-thermal: cold
 - Small interaction with SM particles. $\mathscr{L} = \frac{1}{f} J^{\mu} \partial_{\mu} \phi, \quad f_A \gg v_{\text{EW}}$
 - Small m_a has a long lifetime.

https://www.google.com/url?sa=i&url=https%3A%2F%2Fwww.symmetrymagazine.org%2Farticle%2Fthe-other-dark-mattercandidate&psig=AOvVaw0ANqCII0ryFlaJKtcEvgnS&ust=1643403924692000&source=images&cd=vfe&ved=0CAsQjRxqFwoT CODh O3q0vUCFQAAAAAdAAAAABA0

Motivation Post-inflationary axion DM mass

 θ patches of Universe @ f_A

 Pre-inflationary scenarios allows much wider m_a.

- Post-inflationary production prefers
 m_a: 40 180 μeV.
 Buschmann *et al.*,
 Nat. Commun. 2022
- current Universe?

DM axion detection status

Principle

Principle **Axion-induced E-field**

axion field a

Principle **Axion-induced E-field**

 $\sim 10^{-13} \, [V/m/T]$

- Axion-induced E-field excites resonance in a cavity
 - Cavity experiments "sense the field" using a dipole antenna

Principle Cavity

- Axion-induced E-field excites resonance in a cavity
 - Cavity experiments "sense the field" using a dipole antenna

-
$$P_{\rm sig} \propto U_{EM} \propto \nu^{-2}$$
, or ν^{-3} due t

to mode-crossing

PrincipleLeaky resonator

• Replace one wall with a dielectric.

Principle Leaky resonator

- Replace one wall with a dielectric.
- The axion signal leaks through the dielectric window P_{sig} is independent of $\nu!$

Axion-induced signal

Principle Leaky resonator

- Replace one wall with a **dielectric**.
- The axion signal leaks through the dielectric window P_{sig} is independent of $\nu!$

Unfortunately, P_{sig} is smaller due to the low dielectric reflectivity

Axion-induced signal

Principle **Boost near cut-off**

- T-RAX: waveguide walls on the side.
- Reflectivity increases near the waveguide cut-off ($\beta \rightarrow 0$), and P_{sig} is **boosted**!

WG walls

WG walls

Axion-induced traveling wave signal

Principle Scaling vs. frequency ν

- P_{sig} scales $\propto \nu^{-1}$ from the width, faster than a circular cavity's $\propto \nu^{-2}$
- Scan speed $\propto P_{sig}^2!$

Micro induced traveling wave signal

Axion-induced traveling wave signal

Simulation

Simulation Results

- 80k signal **power boost** from the flat mirror case.
 - > x6 signal power than the ORGAN TM010 mode
 @ 26.6 GHz (100mm)
- Higher conductivity increases the signal power.

Simulation Tuning

• Scan a wider mass range by moving the dielectrics (and changing the k_z vector).

19

Projected sensitivity

$$C_{a\gamma} = 15.1 \left(\frac{300 \text{ MeV/cm}^3}{\rho_a}\right)^{\frac{1}{2}} \left(\frac{80,000}{\beta^2}\right)^{\frac{1}{2}} 10^3 \left(\frac{8 \text{ mm} \times 100 \text{ mm}}{A}\right)^{\frac{1}{2}} \left(\frac{10 \text{ T}}{B_e}\right)_{-\frac{1}{2}} 10^2 \left(\frac{T_{\text{sys}}}{0.9 \text{ K}}\right)^{\frac{1}{2}} \left(\frac{SNR}{5}\right)^{\frac{1}{2}} \left(\frac{0.85}{\eta}\right)^{\frac{1}{2}} \stackrel{10^2}{\smile} 10^1 \left(\frac{\Delta \nu_a}{19 \text{ kHz}}\right)^{\frac{1}{4}} \left(\frac{1 \text{ day}}{\tau}\right)^{\frac{1}{4}}.$$

• 19 GHz, single quantum limit, Normal copper @ 4K, sapphire

 10^{4}

https://www.redbubble.com/de/i/grußkarte/T-Rex-Dinosaur-Surfing-Ride-the-Wave-mit-Tyrannosaurus-auf-Surf-Dino-Serfer-von-alenaz/38872698.5MT14

Back up

