Light Mediators

Bhaskar Dutta

Texas A&M University

NTN workshop, Washington University, St. Louis, May 29-31, 2019

Light Mediators: Why Not?

- v sector of SM (SU(3) x SU(2) x U(1)) requires new physics for understanding the experimental results on masses and mixing angles $m_{\nu_D}^2$
 - tiny v mass: $\frac{m_{\nu_D}^2}{m_{Maj}}$
- Similarly, DM explanation (with M_{DM} anywhere between 1 KeV to 100 TeV) requires new physics
- New physics: new mass scales and new couplings

 $\alpha_x = \frac{g_x^2}{4\pi}$

Thermal DM $H = n \langle \sigma v \rangle \quad \sigma \sim 1 \, pb$

Log m

Light mediators: Why?

Various Light mediators scenarios:

- Various Dark Matter scenarios based on hidden sectors: e.g., models of asymmetric DM, Sommerfeld enhancements motivated by SIMP, Decay of the observable sector DM into hidden sector
- g-2 of electron: 2.4 σ descriptency (recent)
- Neutrino sector physics. New Neutrino interactions to satisfy MiniBoone excess
- Solutions of Yukawa couplings hierarchies problem

Low scales

New physics: new symmetry breaking scale

Existence of new scales above or below the SM in many theories

String theory: U(1) symmetry with a symmetry breaking scale can be anywhere

Cicoli, Goodsell, Jaeckel, Ringwald, 2011 Acharya, Ellis, Kane, Nelson, Perry, 2016

Harnik, Kopp, Machado, 2012

 10^{-4}

10-6

10-8

10-10

10-12

10-14

10⁻¹⁶

Various Models

- Kinetic mixing, L_{μ} - L_{τ} models
- Hidden sector model
- **B-L** for the 3rd generation
- A Low mass DM model associated with a new symmetry scale

Two ways to probe these models (in this talk):

Neutrino, Dark Matter

Models: Kinetic mixing

Simplest idea: Assume a "dark sector" with U(1) symmetry

The "Dark sector" sector mixes with the SM via kinetic mixing (loop generated by particles containing charges from both sectors)

Holdom, 1986

E : can be generated from a loop containing particles with charges belong to both sectors

Models: Kinetic mixing

1. Dark Z boson: α small, coupling: $igtan\theta_w(Y_f/2)\epsilon_B$

2. Dark hypercharge boson: ϵ small, coupling: $-\frac{ig}{c_w}\epsilon_Z(\tau_{3L} - s_w^2Q)$ $\epsilon_Z \equiv s_\alpha$

COHERENT : timing+Energy data

COHERENT AT THE SNS: 1 GeV proton beam hits a Hg target: produces pions

Timing data

Prompt: $\pi^+ \rightarrow \mu^+ + \nu_\mu$

Delayed: $\mu^+ \rightarrow e^+ + \overline{\nu_{\mu}} + \nu_e$

Energy data

COHERENT, 2018

Timing+Energy: Z'

$$\frac{d\sigma}{dE} = \frac{G_F^2 m}{2\pi} \left((g_v + g_a)^2 + (g_v - g_a)^2 \left(1 - \frac{E}{E_\nu} \right)^2 + (g_a^2 - g_v^2) \frac{mE}{E_\nu^2} \right)$$

 $\mathcal{L} \supset Z'_{\mu}(g'_{\nu}\bar{\nu}_{L}\gamma^{\mu}\nu_{L} + g'_{f,v}\bar{f}\gamma^{\mu}f + g'_{f,a}\bar{f}\gamma^{\mu}\gamma^{5}f) \qquad (g_{v},g_{a}) \Rightarrow (g_{v},g_{a}) + \frac{g'_{\nu}(g'_{f,v},\pm g'_{f,a})}{2\sqrt{2}G_{F}(q^{2}+M_{Z'}^{2})}$

Posterior probabilities in a log-liklihood analysis

 $g_e=0$ $g_u=g_d=g_v=g', R_n$ Dutta, Liao, Sinha, Strigari, 2019

Timing+Energy: Z'

Mediator mass, $M_{Z'}$ (MeV)	Fixed (model (a))	Fixed shape (model (b))	Varying (model (c))
free	1.4(0.7)	0.9(0.6)	1.1(0.6)
10	1.9(1.2)	1.4(1.1)	1.6(1.0)
100	1.9(1.1)	1.4(1.1)	1.6(1.1)
1000	1.9(1.2)	1.4(1.1)	1.6(1.1)

$M_{Z'}$ (MeV)	10	100	1000
g_{μ}	$[1.87, 6.65] \times 10^{-5}$	$[0.41, 1.47] \times 10^{-4} \oplus [2.47, 2.66] \times 10^{-4}$	$[0.48, 1.32] \times 10^{-3} \oplus [2.17, 2.47] \times 10^{-3}$
g_e	$[0, 6.12] \times 10^{-5}$	$[0, 1.53] \times 10^{-4} \oplus [2.53, 2.84] \times 10^{-4}$	$[0, 1.22] \times 10^{-3} \oplus [2.22, 2.77] \times 10^{-3}$

Dutta, Liao, Sinha, Strigari, 2019

Timing+Energy: Z'

Nuclear form factor

Helm factor

$$\frac{\mathrm{d}\sigma}{\mathrm{d}E} = \frac{G_F^2 Q_V^2}{2\pi} m_N \left(1 - \left(\frac{m_N E}{E_\nu^2}\right) + \left(1 - \frac{E}{E_\nu}\right)^2 \right) F(q^2) \qquad F_N^{\mathrm{Helm}}(q^2) = 3 \frac{j_1(qR_0)}{qR_0} e^{-q^2 s^2/2},$$

Kinetic mixing

Hidden Sector: Form factor

Hidden sector fermions χ :

$$\mathcal{L} = \frac{g}{\Lambda^2} \bar{q}' \gamma^\mu P_{L,R} q' \bar{\chi} \gamma_\mu (1 \pm \gamma_5) \chi + i \bar{\chi} \gamma^\nu \left[\partial_\nu - i g_\chi Z'^\nu \right] \chi - m_\chi \bar{\chi} \chi + \frac{1}{2} m_{Z'}^2 Z'_\mu Z'^\mu$$

Z' couples directly to χ and leptons

Quark coupling with χ is due to this operator:

$$\mathcal{L}_{HD} = \frac{g_{L,R}}{\Lambda^2} \bar{q'} \gamma^{\mu} P_{L,R} q' \partial^{\nu} Z'_{\mu\nu} ,$$

$$\mathcal{L}_{q'q'} = \bar{q'}\hat{\gamma^{\mu}} \left[P_L F_L(q^2) + P_R F_R(q^2) \right] q' Z'_{\mu}$$

Datta, Duraisamy, Ghosh'13, Datta, Kumar, Liao, Marfatia, '17 Elor, Liu, Slatyer, Soreq, '18

Form factor

$$\mathcal{L}_{\rm BSM} = -\sqrt{2}G_F \bar{\nu_L} \gamma^\mu \nu_L \bar{f} \gamma_\mu f \frac{gF\left(q^2,\Lambda^2\right)}{q^2 + m'^2} \frac{1}{2\sqrt{2}G_F}$$

$$F(q^2,\Lambda^2) = \frac{q^2}{\Lambda^2}$$

m' (MeV)

Datta, Dutta, Liao, Marfatia, Strigari, 2018

Dutta, Liao, Sinha, Strigari, 2019

Lμ-Lτ

$U(1)_{\mu-\tau}$ symmetry Models

[Neutrino flavor structures: He, Joshi, Lew, Volkas,'91] $\mathscr{L}_{\text{int}} = g_{Z'} Q_{\alpha\beta} (\overline{\ell_{\alpha}} \gamma^{\rho} \ell_{\beta} + \overline{\nu_{\alpha}} \gamma^{\rho} P_L \nu_{\beta}) Z'_{\rho}$ $\mathscr{L}_{\text{mass}} = \frac{1}{2} M_{Z'}^2 Z'^{\rho} Z'_{\rho} \qquad Q_{\alpha\beta} = \text{diag}(0, 1, -1)$

Dutta, Liao, Sinha, Strigari, 2019

LMA-D

v – oscillation data allows large NSI in the LMA-dark region

Standard LMA: $34^{\circ} \iff LMA$ -Dark: $45^{\circ} < \theta < 90^{\circ}$ with $\varepsilon \sim 1$

Denton, Farzan, Shoemaker, 2018

B-L for the 3rd generation

Neutrinos and low scale new Physics

Can there be a flavor mediators at low scale???

Babu Friedland Machado Mocioiu 1705.01822

$DM:SU(2)_L \times U(1)_Y \times U(1)_{T3R}$

Model for a sub GeV DM

E.g., there may be a new symmetry breaking scale around GeV $\rightarrow 2^{nd}$ and 1^{st} generation fermion masses ($\sim MeV$ to few GeV)

 $SU(2)_L \times U(1)_Y \times U(1)_{T3R}$

 $U(1)_{T3R}$ is broken at 1-10 GeV down to Z_2

Low mass dark matter, gauge Boson, scalar

Predictions are testable at various low energy experiments

Dutta, Ghosh, Kumar, 2019

Similar model for with 3rd generation: Dutta, Kumar, 2011

U(1)_{T3R}

$$\mathcal{L}_{Yuk} = -\frac{\lambda_u}{\Lambda} \tilde{H} \phi^* \bar{Q}_L q_R^u - \frac{\lambda_d}{\Lambda} H \phi \bar{Q}_L q_R^d - \frac{\lambda_\nu}{\Lambda} \tilde{H} \phi^* \bar{L}_L \nu_R - \frac{\lambda_l}{\Lambda} H \phi \bar{L}_L \ell_R - \lambda \phi \bar{\eta}_R \eta_L - \frac{1}{2} \lambda_L \phi \bar{\eta}_L^c \eta_L - \frac{1}{2} \lambda_R \phi^* \bar{\eta}_R^c \eta_R - \mu_\phi^2 \phi^* \phi - \lambda_\phi (\phi^* \phi)^2 + H.c.,$$

• Scalar ϕ vev $V = (-\mu_{\phi}^2/2\lambda_{\phi})^{1/2}$ breaks U(1)_{T3R} to Z₂, vev is around 1-10 GeV with $m_{\phi'} = 2\lambda_{\phi}^{1/2}V$.

$$\mathcal{L}_{Yuk} = -m_u \bar{q}_L^u q_R^u - m_d \bar{q}_L^d q_R^d - m_\nu \bar{\nu}_L \nu_R - m_\ell \bar{\ell}_L \ell_R - \frac{1}{2} m_1 \bar{\eta}_1 \eta_1 - \frac{1}{2} m_2 \bar{\eta}_2 \eta_2 - \frac{m_u}{V} \bar{q}_L^u q_R^u \phi' - \frac{m_d}{V} \bar{q}_L^d q_R^d \phi' - \frac{m_{\nu D}}{V} \bar{\nu}_L \nu_R \phi' - \frac{m_\ell}{V} \bar{\ell}_L \ell_R \phi' - \frac{1}{2} \frac{m_1}{V} \bar{\eta}_1 \eta_1 \phi' - \frac{1}{2} \frac{m_2}{V} \bar{\eta}_2 \eta_2 \phi' + \dots$$

$$\eta_1 = -\frac{i}{\sqrt{2}} \begin{pmatrix} \eta_L - \eta_R^c \\ -\eta_L^c + \eta_R \end{pmatrix} \qquad \eta_2 = \frac{1}{\sqrt{2}} \begin{pmatrix} \eta_L + \eta_R^c \\ \eta_L^c + \eta_R \end{pmatrix}$$

Dark Matter (parity odd): $\eta_{1,2}$

U(1)_{T3R}

$$\begin{split} \mathcal{L}_{gauge} &= \frac{i}{4} g_{T_{3R}} A'_{\mu} (\bar{\eta}_{1} \gamma^{\mu} \eta_{2} - \bar{\eta}_{2} \gamma^{\mu} \eta_{1}) + \frac{m_{A'}^{2}}{V} \phi' A'_{\mu} A'^{\mu} + \imath g_{T3R} A'_{\mu} (\phi' \partial^{\mu} \phi'^{*} - \phi'^{*} \partial^{\mu} \phi) - \frac{1}{2} g_{T_{3R}} j^{\mu}_{A'} A'_{\mu}, \\ j^{\mu}_{A'} &= \sum_{f} Q^{f}_{T_{3R}} \bar{f} \gamma^{\mu} f. \qquad m_{A'}^{2} = 2g^{2}_{T_{3R}} V^{2} \end{split}$$

U(1)_{T3R}

- $\phi': \phi' \to \overline{ll}, \nu_s \nu_A, \pi \pi, A'A'$: dominate, if kinematically allowed. Otherwise, $\phi' \to \gamma \gamma$ (*one loop diagram*) dominates
- $A': A' \rightarrow \overline{ll}, \nu_s \nu_s, \pi \pi, \phi' \phi':$ dominate, if kinematically allowed. Otherwise, $A' \rightarrow \nu_L \nu_L$ (*one loop diagram*) dominates
- $v_s: v_s \rightarrow v_A \gamma \gamma$: mediated by an offshell ϕ' dominate

Parameter Space

Various scenarios: Gauge boson (A')-scalar (ϕ') mediators parameter space

(1) μ_R , u_R , d_R , ν_R , η_R , η_L , ϕ : E137, Babar, BBN, Globular cluster, Sun, supernova etc

(ii) e_R , u_R , d_R , v_R , η_R , η_L , ϕ : Atomic parity, BBN, Globular cluster, Sun, supernova etc

(iii) μ_R , c_R , s_R , ν_R , η_R , η_L , ϕ : E137, Babar, , BBN, Globular cluster, Sun etc

Various ways of probing Sub-GeV DM:

Migdal effect (Ionization and excitation of electron)

Ibe, Nakano, Shoji, Sujuki, 2018 Dolan, Kahlhoefer, McCabe, 2018

Cosmic ray scattered

Bringmann, Pospelov, 2018

Ema, Sala, Sato, 2018

Dent, Dutta, Newstead, Shoemaker, to appear

Low mass DM (up to 10 GeV) become energetic → *detection becomes easier*

Dent, Dutta, Newstead, Shoemaker, to appear

Low mass mediator scenarios -> Larger cross-section: get constrained

For the T_{3R} model

Couplings are fixed for fixed DM and A' masses

V=10 *GeV*, *m*(*φ*')=100 *MeV*

Dark Matter-electron Scattering

Thermal Relic Abundance

DM Models in v experiments

Production of $DM(\chi_1)$ at COHERENT

Deniverville, Pospelov, Ritz,'15

Hg target
Proton beam

$$(\chi_2: \text{ not DM, a heavier dark-sector state!})$$

There is also another process: Charge exchange: $\pi^- + p \rightarrow \pi^0 + n$ $\pi^0 \rightarrow \gamma + X^{(*)}$

[JSNS² TDR]

Probe Dark Photon $(X^{(*)})$ utilizing:

timing, additional electrons, positrons

Models: timing

Compare with the timing spectra at COHERENT

2. Select time window

Dutta, Kim, Park, Shin, Shu, Strigari, In Progress

Models:e⁺e⁻ from the scattering

 χ_1 : Dark Matter

- Three visible particles (recoil ~ 1-20 MeV)
- *e*⁺*e*⁻ *pair can be displaced (parameter choice)*

Dutta, Kim, Park, Shin, Tayloe, In Progress

Outlook

- What is the scale of new physics?
- Models with light mediators are very interesting: Dark Matter, g-2 of electron, neutrino masses, Yukawa coupling hierarchy, MiniBoone excess
- Mediators masses ≤ 10 GeV are mostly not constrained by the collider bounds
- Many interesting ideas, e.g., L_{μ} - L_{τ} , Hidden sector, U(1)_{T3R,B-L} etc. light mediators (low mass DM)
- Both v and DM experiments are probing light mediators in complimentary ways