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New Neutrino Oscillation Experiments: Missing Oscillation Parameters
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Ultimate Goal: Not Measure Parameters but Test the Formalism (Over-Constrain Parameter Space)
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What we ultimately want to achieve:

1.5 T T 1 | [T T 1 | T T s | T T 1 | T T 1 | T T 1
: excluded area has CL > 0.95 | % :
: Yo ]
1.0 — . A —
| 5 2 Amy & Amg
B sin 23 3
0.5 I~ § u
- S Amy
- 8K b _
N To > _
= 0.0 I S W N — 7] We need to do this in
i ' § the lepton sector!
L ub _
| Vi
~0.5— o —
1.0 € —
— % i ‘Y sol.w/cos2p<0
— Moriond 09 : (excl. at CL > 0.95)
_1 .5 B I I | | I I | | I | | I I | | I A | | I I i
-1.0 -0.5 0.0 0.5 1.0 1.5 2.0

p

May 30, 2019 v LBL Phys




André de Gouvéa Northwestern

Ve Uei Uex Ues V1
Vr U’rl U7'2 U’7'3 V3

What we have really measured (very roughly):
e T'wo mass-squared differences, at several percent level — many probes;
o |Ueca|? — solar data;
o |U,2|? + |Ur2|* — solar data;
o |Ue2|?|Uc1]? — KamLAND;
o |U,s3|?(1 —|Uus|?) — atmospheric data, K2K, MINOS;
o |Uecs|?(1 — |Ues|?) — Double Chooz, Daya Bay, RENO:;

o |Uecs|?|U,3|? (upper bound — evidence) — MINOS, T2K.

We still have a ways to go!
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What Could We Run Into?

e New neutrino states. In this case, the 3 X 3 mixing matrix would not
be unitary.

e New short-range neutrino interactions. These lead to, for example,
new matter effects. If we don’t take these into account, there is no
reason for the three flavor paradigm to “close.”

e New, unexpected neutrino properties. Do they have nonzero magnetic
moments? Do they decay? The answer is ‘yes’ to both, but nature
might deviate dramatically from vSM expectations.

e Weird stuff. CPT-violation. Decoherence effects (aka “violations of
Quantum Mechanics.”)

e ctc.
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Case Studies

I will discuss a few case-studies, especially the fourth-neutrino hypothesis

and non-standard neutral-current neutrino—matter interactions. In general
e [ will mostly discuss, for concreteness, the DUNE setup;

e [ don’t particularly care about how likely, nice, or contrived the scenarios
are. It is useful to consider them as well-defined ways in which the
three-flavor paradigm can be violated. They can be used as benchmarks for
comparing different efforts, or, perhaps, as proxies for other new
phenomena.

e [ will mostly be interested in three questions:

— How sensitive are next-generation long-baseline efforts?;

— How well they can measure the new-physics parameters, including new

sources of CP-invariance violation?;

— (Can they tell different new-physics models apart?
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A Fourth Neutrino

(Berryman et al, arXiv:1507.03986)

If there are more neutrinos with a well-defined mass, it is easy to extend the

paradigm:
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e New mass eigenstates easy: v4 with mass my4, vs with mass ms, etc.

e What are these new “flavor” (or weak) eigenstates v»7 Here, the answer is
we don’t care. We only assume there are no new accessible interactions

assoclated to these states.
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mixing angles ¢14, ¢24, and ¢34 vanish, one encounters oscillations

among only three neutrinos, and we can map the remaining parameters {12, ¢13, ¢23,
m } — {012, 013, 623, dcp}.

Also

Ns =12 — N3,

is the only new CP-odd parameter to which oscillations among v and v, are sensitive.
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Some technicalities for the aficionados
e 34 kiloton liquid argon detector;

e 1.2 MW proton beam on target as the source of the neutrino and

antineutrino beams, originating 1300 km upstream at Fermilab;
e 3 years each with the neutrino and antineutrino mode;
e Include standard backgrounds, and assume a 5% normalization uncertainty;

e Whenever quoting bounds or measurements of anything, we marginalize

over all parameters not under consideration,;

e We include priors on Amji, and |Uez2|* in order to take into account
information from solar experiments and KamLAND. Unless otherwise

noted, we assume the mass ordering is normal;

e We do not include information from past experiments. We assume that
DUNE will “out measure” all experiments that came before it (except for

the solar ones, as mentioned above).
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FIG. 1: Expected signal and background yields for six years (3y v + 3y 7) of data collection at DUNE, using fluxes projected
by Ref. [1], for a 34 kiloton detector, and a 1.2 MW beam. (a) and (b) show appearance channel yields for neutrino and
antineutrino beams, respectively, while (¢) and (d) show disapgearance channel yields. The 3v signal corresponds to the
standard three-neutrino hypothesis, where sin? ;2 = 0.308, sin® 613 = 0.0235, sin 623 = 0.437, Am?, = 7.54 x 107° eV?,
Am?s = 2.43 x 1072 eV2, 6cp = 0, while the 4v signal corresponds to sin® ¢12 = 0.315, sin® ¢13 = 0.024, sin® ¢oz = 0.456,
May 30, 2 Oiigz $14 = 0.023, sin? gog = 0.030, Am?; = 1072 eVZ, 551 = 0, and ns = 0. Statistical uncertainties are shown as vertical bars
’ in each bin. Backgrounds are defined 1n the text and are assumed to be 1dentical for the three- and Iour-neutrino scenarios:
any discrepancy is negligible after accounting for a 5% normalization uncertainty.
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FIG. 5: Expected sensitivity contours at 68.3% (blue), 95% (orange), and 99% (red) CL at DUNE with six years of data
collection (3y v + 3y v), a 34 kiloton detector, and a 1.2 MW beam given the existence of a fourth neutrino with parameters
from Case 2 in Table I. Results from solar neutrino experiments are included here as Gaussian priors for the values of

|Ue2|? = 0.301 £ 0.015 and Am?, = 7.54 £0.24 x 1075 eV? [22].
sin? d14 sin? h24 Am:f4 (eVZ) s sin? d12 sin? h13 sin? P23 Am%z (eVZ) Am%3 (eVz) M
Case 1|| 0.023 | 0.030 0.93 —m /4| 0.315 | 0.0238 | 0.456 |7.54 x 107°|2.43 x 1073 |7/3
Case 2| 0.023 | 0.030 | 1.0 x 10~2 |—=/4|| 0.315 | 0.0238 | 0.456 |7.54 x 107> |2.43 x 10—3 |7 /3
Case 3|| 0.040 | 0.320 | 1.0 x 10~° |—=/4|| 0.321 | 0.0244 | 0.639 |7.54 x 107> |2.43 x 103 |7 /3

TABLE I: Input values of the parameters for the three scenarios considered for the four-neutrino hypothesis. Values of ¢12,
$13, and ¢23 are chosen to be consistent with the best-fit values of |Uez|?, |Ues|?, and |Ups|?, given choices of ¢14 and ¢24. Here,
ns = n2 — n3. Note that Am?, is explicitly assumed to be positive, i.e., m3 > m%
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FIG. 6: Expected sensitivity contours at 68.3% (blue), 95% (orange), and 99% (red) CL at DUNE with six years of data
collection (3y v + 3y 7), a 34 kiloton detector, and a 1.2 MW beam given the existence of a fourth neutrino with parameters

from Case 3 in Table I. Results from solar neutrino experiments are included here as Gaussian priors for the values of
|Ue2|® = 0.301 & 0.015 and Am3, = 7.54 +0.24 x 1075 eV? [22].
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Non-Standard Neutrino Interactions (INSI)

Effective Lagrangian:

LN = _QﬂGF(DanVB) Z (d;g?L’Ypr + eﬁngvpr) + h.c.,

f=e,u,d
For oscillations,
H;; = 2; diag {O,Am%Q,Amfg} + Vij,
v
where
Vij = U VapUsj,
1+ €ce €ep  €Eer
Vap = A €op €up  €Eur |
€or €ur  Err

A = V2GFn.. €op are linear combinations of the eig’R. Important: I will
discuss propagation effects only and ignore NSI effects in production or

detection (e versus €?).
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gray 1 o band) appears divergent around a few MeV, whereas for
NSI with €, = 0.4 (thick magenta), the electron neutrino probability

appears to fit the data better. The data points come from the recent
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v —ck, [-0.005,+0.130]  [-0.152,+0.130] | B o i
err | +0.130] | OB L (0.110,+0.404] [~0.110,+0.404]
€, [~0.060,+0.049]  [-0.060,+0.067] | %, [—0.060,+0.049] [—0.060,+0.049]
gL [-0.292,+0.119]  [-0.292,40.336] | c* [-0.248,+0.116] [—0.248,+0.116]
Y [-0.013,40.010]  [-0.013,+0.014] | €% [-0.012,+0.009] [—0.012,+0.009]

d
i e?  [-0.012,40.565] [—0.012,40.565]
d _ed [-0.027,40.474] &[-1.232,-1.111
Fee T Cpp { 0005:0 095} @{ 0015 10 095} ed  [~0.103,+0.361] [—0.103,+0.361]
£ — £ —U. ) . —VU. : .
T Thm ’ * ed_ [-0.102,40.361] [-0.102,+0.361]
e, [~0.061,+0.049]  [-0.061,+0.073] | &, [—0.058,+0.049] [—0.058,-+0.049]
ed [-0.247,40.119]  [-0.247,40.119] | ¢ [-0.206,+0.110] [—0.206,+0.110]
el [-0.012,40.009]  [-0.012,+0.009] | ¢Z_ [-0.011,40.009] [—0.011,+0.009]
P, [-0.010,+42.039] [-0.010,+2.039]

P, — b, [-0.041,+1.312] ©[-3.328,-1.958] | .° | -
Tee T Chw { 0015*0426} @{ o 0426} el [~0.364,+1.387] [-0.364,+1.387]
&~ G (70000, 40 ki €. [~0.350,+1.400] [—0.350,+1.400]
e, [-0.178,40.147]  [-0.178,40.178] | &, [-0.179,40.146] [—0.179,+40.146]
ks [—0.954, 4+0.356]  [—0.954,4+0.949] | &, [—0.860,+0.350] [—0.860,+0.350]
br [—0.035,+0.027]  [-0.035,+0.035] | &, [-0.035,+0.028] [-0.035,+0.028]

Table 1. 20 allowed ranges for the NSI couplings £ ;, ezﬁ and ¥ 5 as obtained from the global
analysis of oscillation data (left column) and also including COHERENT constraints. The results
are obtained after marginalizing over oscillation and the other matter potential parameters either
within the LMA only and within both LMA and LMA-D subspaces respectively (this second case

is denoted as LMA ¢ LMA-D).
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Figure 6. Two-dimensional projections of the allowed regions onto different vacuum parameters

after marginalizing over the matter potential parameters (including 7) and the undisplayed oscilla-

tion parameters. The solid colored regions correspond to the global analysis of all oscillation data,
and show the 1o, 90%, 20, 99% and 30 CL allowed regions; the best-fit point is marked with a star.
The black void regions correspond to the analysis with the standard matter potential (i.e., without
NSI) and its best-fit point is marked with an empty dot. For comparison, in the left panel we show
in red the 90% and 3o allowed regions including only solar and KamLAND results, while in the

right panels we show in green the 90% and 30 allowed regions excluding solar and KamLAND data,
and in yellow the corresponding ones excluding also IceCube and reactor data.
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There are new sources of CP-invariance violation! |easier to see T-invariance violation]
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[AAG and Kelly, arXiv:1511.05562]

FIG. 2: T-invariance violating effects of NSI at L = 1300 km for e, = O.Iei"/a, €er = O.Ie_i"/4, €. = 0.1 (all other
NSI parameters are set to zero). Here, the three-neutrino oscillation parameters are sin? 612 = 0.308, sin?613 = 0.0234,
sin? O3 = 0.437, Am?s = 7.54 x 107° eV2, Am?s = 2.47 x 1072 V2, and § = 0, i.e., no “standard” T-invariance violation.
The green curve corresponds to P., while the purple curve corresponds to P,.. If, instead, all non-zero NSI are real (€., = 0.1,
€er = 0.1, €, =0.1), P.,, = P,., the grey curve. The dashed line corresponds to the pure three-neutrino oscillation probabilities
assuming no 7T-invariance violation (all eag = 0, § = 0).
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FIG. 4: Expected exclusion limits at 68.3% (red), 95% (orange), and 99% (blue) CL at DUNE assuming data consistent with
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TABLE I: Input values of the new physics parameters for the three NSI scenarios under consideration. The star symbol is a

reminder that, as discussed in the text, we can choose €,, = 0 and reinterpret the other diagonal NSI parameters.
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Telling Different Scenarios Apart:
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FIG. 8: Sensitivity contours at 68.3% (blue), 95% (orange), and 99% (red) for a four-neutrino fit to data consistent with Case
2 from Table I. All unseen parameters are marginalized over, and Gaussian priors are included on the values of Am?, and

|Ue2|?. See text for details.

[AAG and Kelly, arXiv:1511.05562]

Fit Case 1 Case 2 Case 3
3v with Solar Priors||217/114 ~ 5.40|186/114 ~ 4.20|118/114 ~ 4.30
3v without Priors |[172/114 ~ 3.40|134/114 ~ 1.60(154/114 ~ 2.70
4v with Solar Priors|[193/110 ~ 4.80{142/110 ~ 2.30|153/110 ~ 2.80

TABLE II: Results of various three- or four-neutrino fits to data generated to be consistent with the cases listed in Table L.
Numbers quoted are for x2;, / dof and the equivalent discrepancy using a x? distribution.
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How Do We Learn More — Different Experiments!

— Different L and E, same L/E (e.g. HyperK versus DUNE);
— Different matter potentials (e.g. atmosphere versus accelerator);

— Different oscillation modes (appearance versus disappearance, e’s, u’s and 7’s).

0.10 I
=== DUNE No NSI
0.08L ===  Hyper—K No NSI :‘.‘
= DUNE NSI Case 1 : .
- = Hyper—K NSI Case 1 7AY
~ 0.06 -, - HER Y
= :',- “ “ ',' ) “:“ :
20— "\\ —
0.02 s : ‘-‘ ;' \ [AdG and Kelly, arXiv:1511.05562]
0.00 L -
0 1000 2000 3000
L/E, [km/GeV]

FIG. 9: Oscillation probabilities for three-neutrino (dashed) and NSI (solid) hypotheses as a function of L/E,, the baseline

length divided by neutrino energy, for the DUNE (purple) and HyperK (green) experiments. Here, § = 0 and the three-neutrino
parameters used are consistent with Ref. [47].
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The Physics Behind NSI — Comments and Concerns

There are two main questions associated to NSI’s. They are somewhat
entwined.

1. What is the new physics that leads to neutrino NSI? or are there
models for new physics that lead to large NSIs? Are these models well
motivated? Are they related to some of the big questions in particle

physics?

2. Are NSIs constrained by observables that have nothing to do with
neutrino physics? Are large NSI effects allowed at all?

May 30, 2019 v LBL Phys
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Effective Lagrangian:

£5 = o\/3Gre (7a) (F1)
This is not SU(2)r invariant. Let us fix that:

LY = —2V2G pe™ (Lo, Lp) (FA°F) -

where L = (v,£7)1 is the lepton doublet. This is a big problem.

Charged-Lepton flavor violating constraints are really strong (think
u— ete"et, u — e-conversion, 7 — p-+hadrons, etc), and so are most of

the flavor diagonal charged-lepton effects.

There are a couple of ways to circumvent this. ..

v LBL Phys
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1. Dimension-Eight Effective Operator

LY = —2V2G pe® (Da,vp) ([ F) -
This is not SU(2)r invariant. Let us fix that in a different way
af _
£ = —2v3Gr S (HL) L (HL)s) (F°S).

where HL o« HT/~ — H'v. After electroweak symmetry breaking
H° — v+ h" and we only get new neutrino interactions.

Sadly, it is not that simple. At the one-loop level, the dimension-8
operator will contribute to the dimension-6 operator in the last page, as
discussed in detail in [Gavela et al, arXiv:0809.3451 [hep-phl|. One can,

however, fine-tune away the charged-lepton effects.
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2. Light Mediator

(Recent overview: Y. Farzan and M. Tértola, arXiv:1710.09360 [hep-ph])

LN = 2v2G pe? (Barnyp) (F17 f)

This may turn out to be a good effective theory for neutrino propagation
but a bad effective theory for most charged-lepton processes. I.e.

LN = —2V2G pe? (Lo Ls) (17 f)

might be inappropriate for describing charged-lepton processes if the
particle we are integrating out is light (as in lighter than the muon).

Charged-lepton processes are “watered down.” Very roughly

2
m
€ — €
my

where m s is the mass of the particle mediating the new interaction, and

my is the mass associated to the charged-lepton process of interest.
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Different Oscillation Parameters for Neutrinos and

Antineutrinos?
[AdG, Kelly, arXiv: 1709.06090]

e How much do we know, independently, about neutrino and

antineutrino oscillations?

e What happens if the parameters disagree?

May 30, 2019 v LBL Phys
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Physics with Beam v,’s at the DUNE Far Detector Site

André de Gouvéa, Kevin Kelly, Pedro Pasquini, Gabriela Stenico, arXiv:1904.07265

May 30,

v, sample: what is it good for?

v, sample: how many? how clean? how well can we reconstruct the

v, energy?
options? High energy beam?

others: v, in the near detector? Atmospheric v, ? — for the future. ..

2019 v LBL Phys
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v, sample: what is it good for?

e Model independent checks.
— Establishing the existence of v, in the beam:;
— Is it consistent with the oscillation interpretation v, — ;7
— Measuring the oscillation parameters.

— Comparison to OPERA, atmospheric samples.

e (Cross-section measurements.

— Comparison to OPERA, atmospheric samples.

e Testing the 3-neutrinos paradigm.
— Independent measurement of the oscillation parameters.
— More concretely: “unitarity triangle”-like test.

— Is there anything the v, sample brings to the table given the v,

Ve, and neutral current samples? |model-dependent)]
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0.5 < sin®(20,,) < 1
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Testing the Three-Massive-Neutrinos Paradigm
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Testing the Unitarity of the Mixing Matrix
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In Conclusion

The venerable Standard Model sprung a leak in the end of the last
century (and we are still trying to patch it): neutrinos are not massless!

1. We still know very little about the new physics uncovered by neutrino

oscillations.

2. neutrino masses are very small — we don’t know why, but we think it

means something important.

3. neutrino mixing is “weird” — we don’t know why, but we think it means

something important.
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4. We need more experimental input These will come from a rich, diverse
experimental program which relies heavily on the existence of underground
facilities capable of hosting large detectors (double-beta decay, precision

neutrino oscillations, supernova neutrinos, proton decay, etc).

5. Precision measurements of neutrino oscillations are sensitive to
several new phenomena, including new neutrino properties, the
existence of new states, or the existence of new interactions.
There is a lot of work to be done when it comes to understanding
which new phenomena can be probed in long-baseline oscillation
experiments (and how well) and what are the other questions one
can ask — related and unrelated to neutrinos — of these unique

particle physics experiments.

6. There is plenty of room for surprises, as neutrinos are potentially very
deep probes of all sorts of physical phenomena. Remember that neutrino
oscillations are “quantum interference devices” — potentially very sensitive

to whatever else may be out there (e.g., A ~ 10 GeV).

May 30, 2019 v LBL Phys
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Not all is well(?): The Short Baseline Anomalies

Different data sets, sensitive to L/FE values small enough that the known
oscillation frequencies do not have “time” to operate, point to unexpected
neutrino behavior. These include

e v, — V. appearance — LSND, MiniBooNE;
® U, — Usther disappearance — radioactive sources;
® U, — Uyther disappearance — reactor experiments.

None are entirely convincing, either individually or combined. However,

there may be something very very interesting going on here. ..
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What is (Going on Here?

e Are these “anomalies” related?

e Is this neutrino oscillations, other new physics, or something else?

e Are these related to the origin of neutrino masses and lepton mixing?
e How do clear this up definitively?

Need new clever experiments, of the short-baseline type!

Observable wish list:
e v, disappearance (and antineutrino);
e v, disappearance (and antineutrino);
® U, <> V. appearance;

® U, . — Uy appearance.
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Another Model: Can Neutrino Oscillation Experiments Discover A Fifth Dimension?
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FIG. 1: Oscillation probabilities assuming a three-neutrino framework (dashed) and an LED hypothesis
with mo =5 x 1072 eV and Rgp, = 0.38 eV (Rep = 5 x 10~ c¢m), for the normal eutrino mass hi rara'(lz%'
’ t al, v:1603.00018
Am?, > 0. The values of the other oscillation parameters are tabulated in Table I,lleeegé}}(’t or deetazﬁs. e ]
top row displays appearance probabilities P(v, — v.) (left) and P(7, — 7.) (right), and has curves shown
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Another Model: Can Neutrino Oscillation Experiments Discover A Fifth Dimension?
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FIG. 3: Exclusion limits in the Rg)—mo plane, assuming either (a) a normal hierarchy or (b) an inverted
hierarchy of neutrino masses. The exclusion regions are to the top-left of the relevant curves. Shown are
the 95% CL lines from DUNE (black), IceCube-40 (mauve) and Ice-Cube79 (blue) [20], and a combined
analysis of T2K and Daya Bay (gold) [18]. We also include the 90% CL line from sensitivity analysis of
KATRIN (burgundy) [16]. The shaded green regions are preferred at 95% CL by the reactor anomaly seen
in reactor and Gallium experiments [19]. The gray shaded regions are excluded by the measurements of

Am?, as explained in the text. The dotted gray lines are curves along which ), m§°’ = 0.25 eV. Higher

values of ). m§°’ correspond to the regions above and to the right of the dotted gray lines.

[Berryman et al, arXiv:1603.00018]
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Another Model: Can Neutrino Oscillation Experiments Discover A Fifth Dimension?
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FIG. 4: Expected sensitivity to a non-zero set of LED parameters as measured by DUNE, assuming three
years each of neutrino and antineutrino data collection. Fig. 4(a) assumes the normal mass hierarchy (NH)
and Fig. 4(b) assumes the inverted mass hierachy (IH). The LED parameters assumed here are mg = 5x 1072
eV and Rgp = 0.38 eV, while 8,3 = m/3. The input values of Am?, i = 1,2 are in Table I. The input
values for the mixing angles are, for the NH, sin? f15 = 0.322, sin? 6,3 = 0.0247, sin® 3 = 0.581, and, for
the IH, sin® ;5 = 0.343, sin® ;3 = 0.0231, sin® 23 = 0.541. [Berryman et al, arXiv:1603.00018]
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