Non-Standard Interaction in Radiative Neutrino Mass Models

K.S. Babu¹

Bhupal Dev² Sudip Jana¹ Anil Thapa¹

Oklahoma State University

²Washington University in St. Louis

NTN Workshop on NSI May 29 - 31, 2019

Outline

Consistency with Neutrino Oscillation Data

- 4 Collider and Flavor Constraints
- 5 Numerical Results for NSI

ν mass generation

• In Standard Model $M_{\nu} = 0$. But, ν flavor mix. $\nu_{aL} \leftrightarrow \nu_{bL}$

$$|\nu_{\alpha}\rangle = \sum U_{\alpha i}|\nu_i\rangle \Longrightarrow M_{\nu} \neq 0 \Longrightarrow$$
 New physics beyond SM

- Simplest possibility: Introduce ν_R to the SM allowing $\mathcal{L}_Y : y_{\nu} \bar{\psi}_L \phi \nu_R + h.c.$
 - $m_{\nu} \sim 0.1 eV$, this means yukawa coupling $y_{\nu} \sim 10^{-12}!!$
 - Yukawa coupling likely to be same order as of quark and charged leptons. But observation shows $m_{\nu} \ll m_q$ or m_l
- Schemes for neutrino masses and mixings:
 - Tree-level Seesaw mechanism
 - Radiative schemes

Seesaw Paradigm

- Light neutrino mass is induced via Weingberg's dim-5 operator, $\frac{LL\phi\phi}{\Lambda}$
- Large Majorana mass scale Λ to suppress the neutrino mass via $\frac{\langle \phi \rangle^2}{\Lambda}$.
- Different schemes:

,* $^{\langle \phi \rangle}$

 $\langle \phi \rangle_{\bigstar}$

Type I/ Type III: ν -mass induced from fermion exchange: $N^1 \sim (1, 1, 0)$ $N^3 \sim (1, 3, 0)$

Type II: ν -mass induced from scalar boson exchange $\Delta \sim (1,3,1)$

• The scale of new physics can be rather high

Radiative ν mass generation

- Neutrino masses are zero at tree level as SM: ν_R may be absent.
- Small, finite Majorana masses are generated at the quantum level.
- Typically new heavy scalar fields introduced violates lepton number, gives rise to neutrino flavor transitions, and lepton flavor violation.
- Simple realization is the Zee Model, which has a second Higgs doublet and a charged singlet.

- Smallness of neutrino mass is explained via loop and chiral suppression.
- New physics in this framework may lie at the TeV scale.

Type I radiative mechanism

- Obtained from effective d = 7, 9, 11... operators with $\Delta L = 2$ selection rule
- If the loop diagram has at least one Standard Model particle, this can be cut to generate such effective operators

Classification: Babu, Leung (2001) Cai, Herrero-Gracia, Schmidt, Vicente, Volkas (2017)

Type II radiative mechanism

- No Standard Model particle inside the loop
- Cannot be cut to generate d = 7, 9,... operators
- Scotogenic model is an expample

- Neutrino mass has no chiral suppression; new scale can be large
- Other considerations (dark matter) require TeV scale new phyiscs

Ma (2006)

Nonstandard neutrino interactions

- Unknown couplings that involve neutrinos
- Many neutrino mass models naturally lead to NSI to some level
- New physics near TeV scale can generate nonstandard neutrino interactions (NSI)
- NSI effects happen in the neutrino production, ε^S, propagation through matter, ε^m, and the detection processes, ε^D.
- Most important effect of NSI is in neutrino propagation in matter Wolfenstein (1978)
- Phenomenological, NSI can be described with an effective four ferimion Lagrangian

$$\mathcal{L}_{\text{NSI}} = -2\sqrt{2}G_F \sum_{f,P,\alpha,\beta} \varepsilon_{\alpha\beta}^{f\,P} (\bar{\nu}_{\alpha}\gamma^{\mu}P_L\nu_{\beta}) (\bar{f}\gamma_{\mu}Pf)$$

 $\varepsilon_{\alpha\beta}^{f\,P}$ is the parameter that describes the strength of the NSI

Nonstandard neutrino interactions

Matter potential

$$H_{\text{mat}} = \sqrt{2}G_F N_e(x) \begin{pmatrix} 1 + \varepsilon_{ee}(x) & \varepsilon_{e\mu}(x) & \varepsilon_{e\tau}(x) \\ \varepsilon_{e\mu}^*(x) & \varepsilon_{\mu\mu}(x) & \varepsilon_{\mu\tau}(x) \\ \varepsilon_{e\tau}^*(x) & \varepsilon_{\mu\tau}^*(x) & \varepsilon_{\tau\tau}(x) \end{pmatrix}$$

• Note
$$\varepsilon_{\alpha\beta} \equiv \text{real if } \alpha = \beta$$

$$\varepsilon_{\alpha\beta}(x) \equiv \sum_{f=e,u,d} \varepsilon_{\alpha\beta}^f \frac{N_f(x)}{N_e(x)} \qquad \qquad \varepsilon_{\alpha\beta}^f = \varepsilon_{\alpha\beta}^{f,L} + \varepsilon_{\alpha\beta}^{f,R}$$

- In leptoquark models, one has $\varepsilon_{\alpha\beta}^{u,d}$ only
- Presence of ε_{ij} affect mass ordering and CP violation

Esteban, Gonzalez-Garcia, Maltoni (2019)

NSI in Zee-Babu Model

• Two $SU(2)_L$ singlet Higgs fields, h^+ and k^{++} are introduced

• The corresponding Lagrangina reads:

 $\mathcal{L} = \mathcal{L}_{SM} + f_{ab} \overline{\Psi_{aL}^C} \Psi_{bL} h^+ + h_{ab} \overline{l_{aR}^C} l_{bR} k^{++} - \mu h^- h^- k^{++} + h.c. + V_H$

• Majorana neutrino masses are generated by 2-loop diagram:

$$M_{
u} pprox rac{1}{(16\pi^2)^2} rac{8\mu}{M^2} f_{ac} \, ilde{h}_{cd} \, m_c \, m_d \, (f^\dagger)_{db} \, ilde{I}(rac{m_k^2}{m_h^2})$$

NSI in Zee-Babu Model

The heavy singly charged scalar induces nonstandard neutrino interactions:

T. Ohlsson et al. (2009)

NSI in KNT Model

• Singlet fermion N and two singlet scalars η_1^+ and η_2^+ are introduced

$$\mathcal{L}_Y = f LL\eta_1^+ + g e^c N \eta_2^- + \frac{1}{2} M_N NN$$

- η_2^+ and N are odd under \mathbb{Z}_2
- Majorana neutrino masses are generated via 3-loop diagram

• Only NSI is from η_1^+

Zee Model

- Gauge symmetry is same as Standard Model
- Zee Model has a second Higgs doublet H_2 and a charged weak singlet η^+ scalars

$$H_{1} = \begin{pmatrix} H_{1}^{+} \\ \frac{1}{\sqrt{2}}(\mathbf{v} + H_{1}^{0} + iG^{0}) \end{pmatrix}, \qquad H_{2} = \begin{pmatrix} H_{2}^{+} \\ \frac{1}{\sqrt{2}}(H_{2}^{0} + iA) \end{pmatrix}$$

• The Yukawa lagrangian reads:

$$\mathcal{L}_{Y} = f^{ab}(\psi^{i}_{aL} C \psi^{j}_{bL}) \epsilon_{ij} \eta^{+} + \overline{\psi}_{L} \tilde{y} H_{1} e_{R} + \overline{\psi}_{L} y H_{2} e_{R} + h.c.$$
$$V = \mu H^{i}_{1} H^{j}_{2} \eta^{-} + h.c. + \dots$$

• Mixing between η^+ and H_2^+ :

$$\begin{pmatrix} M_2^2 & -\mu \mathrm{v}/\sqrt{2} \ -\mu \mathrm{v}/\sqrt{2} & M_3^2 \end{pmatrix},$$

A. Thapa (OSU)

05/2019 13 / 44

 $\sin 2\varphi = \frac{\sqrt{2}\nu\mu}{m_{L+}^2 - m_{T+}^2}$

Neutrino masses in the Zee Model

• Yukawa coupling matrices:

$$f = \begin{pmatrix} 0 & f_{e\mu} & f_{e\tau} \\ -f_{e\mu} & 0 & f_{\mu\tau} \\ -f_{e\tau} & -f_{\mu\tau} & 0 \end{pmatrix}, \qquad y = \begin{pmatrix} y_{ee} & y_{e\mu} & y_{e\tau} \\ y_{\mu e} & y_{\mu\mu} & y_{\mu\tau} \\ y_{\tau e} & y_{\tau\mu} & y_{\tau\tau} \end{pmatrix}$$

• Neutrino masses:

Neutrino masses in the Zee Model

- If $y \propto M_l$, which happens with a Z_2 , then model is ruled out Wolfenstein (1980)
- In general, y is not proportional to M_l , and the model gives reasonable fit to oscillation data
- Charged current NSI arises via the exchange of h^{\pm}

Consistency with Neutrino Oscillation Data

$$M_{l} = \begin{pmatrix} m_{e} & 0 & 0\\ 0 & m_{\mu} & 0\\ 0 & 0 & m_{\tau} \end{pmatrix} \qquad \qquad y = \begin{pmatrix} 0 & 0 & y_{e\tau}\\ 0 & y_{\mu\mu} & y_{\mu\tau}\\ y_{\tau e} & 0 & y_{\tau\tau} \end{pmatrix}$$

With the choice of parameters:

$$\frac{f_{e\mu}}{f_{\mu\tau}} = 0.42, \quad \frac{f_{e\tau}}{f_{\mu\tau}} = 4.34, \quad \frac{y_{e\tau}}{y_{\tau e}} = 0.003$$
$$\frac{y_{\mu\mu}}{y_{\tau e}} = 0.011, \quad \frac{y_{\mu\tau}}{y_{\tau e}} = -0.013, \quad \frac{y_{\tau\tau}}{y_{\tau e}} = 0.015$$

Parameters	3σ range	Benchmark
		Points
$\Delta m_{21}^2 (10^{-5})$	6.79 - 8.01	7.32
$\Delta m_{23}^2(10^{-3})$	2.412 - 2.611	2.51
$\sin^2 \theta_{12}$	0.275 - 0.350	0.349
$\sin^2 \theta_{23}$	0.423 - 0.629	0.54
$\sin^2 \theta_{13}$	0.02068 - 0.02463	0.0236

Consistency with Neutrino Oscillation Data

$$y = \begin{pmatrix} y_{ee} & 0 & y_{e\tau} \\ 0 & y_{\mu\mu} & y_{\mu\tau} \\ 0 & 0 & y_{\tau\tau} \end{pmatrix}$$

With the choice of parameters:

$$\frac{f_{e\mu}}{f_{\mu\tau}} = 4.55, \quad \frac{f_{e\tau}}{f_{\mu\tau}} = 1.79, \quad \frac{y_{e\tau}}{y_{ee}} = -0.049,$$
$$\frac{y_{\mu\mu}}{y_{ee}} = 0.99, \quad \frac{y_{\mu\tau}}{y_{ee}} = 0.046 \quad \frac{y_{\tau\tau}}{y_{ee}} = 0.21$$

Parameters	3σ range	Benchmark
		Points
$\Delta m_{21}^2 (10^{-5})$	6.79 - 8.01	6.95
$\Delta m_{23}^2(10^{-3})$	2.412 - 2.611	2.44
$\sin^2 \theta_{12}$	0.275 - 0.350	0.323
$\sin^2 \theta_{23}$	0.423 - 0.629	0.581
$\sin^2 \theta_{13}$	0.02068 - 0.02463	0.0208

NSI in Zee Model

• The singly-charged scalars η^+ and H_2^+ induce NSI at tree level:

NSI in the Zee Model

- Considering, $y \sim \mathcal{O}(1)$, $m_{\tau} \sim 1.7$ GeV and $M_{\nu} \sim \mathcal{O}(10^{-1})$ eV demands $f \sim 10^{-8} \Longrightarrow$ NSI effect from f is heavily suppressed
- The effective NSI is:

$$arepsilon_{lphaeta}^m = -rac{1}{4\sqrt{2}}\sin^2arphi rac{y^*_{lpha e}y_{eta e}}{G_F \, m^2_{h^+}}$$

• The relevant Yukawas for NSI:

$$\begin{split} \varepsilon^{m}_{ee} &\sim |y_{ee}|^{2} \quad \varepsilon^{m}_{e\mu} \sim y^{*}_{ee} y_{\mu e} \\ \varepsilon^{m}_{\mu\mu} &\sim |y_{\mu e}|^{2} \quad \varepsilon^{m}_{\mu\tau} \sim y^{*}_{\mu e} y_{\tau e} \\ \varepsilon^{m}_{\tau\tau} &\sim |y_{\tau e}|^{2} \quad \varepsilon^{m}_{e\tau} \sim y^{*}_{ee} y_{\tau e} \end{split}$$

$$\begin{pmatrix} y_{ee} & y_{e\mu} & y_{e\tau} \\ y_{\mu e} & y_{\mu\mu} & y_{\mu\tau} \\ y_{\tau e} & y_{\tau\mu} & y_{\tau\tau} \end{pmatrix}$$

• Note: $\varepsilon_{\alpha\alpha} < 0$

NSI in Leptoquark: Colored Zee Model

• Two $SU(3)_C$ scalar fields, $\Omega \sim (3, 2, 1/6)$ and $\chi^{-1/3} \sim (3, 1, -1/3)$, are introduced

$$\Omega = \begin{pmatrix} \omega^{2/3} \\ \omega^{-1/3} \end{pmatrix} \qquad \qquad \chi^{-1/3}$$

• The Yukawa lagrangian reads:

$$\mathcal{L}_Y = y_{ij}L_i d_j^c \Omega + y_{ij}' L_i Q_j \chi^* + h.c.$$

$$V = \mu \Omega \chi^* H^{\dagger} + h.c.$$

• Mixing between $\omega^{-1/3}$ and $\chi^{-1/3}$:

$$\begin{pmatrix} M_{\omega}^2 & \mu \mathbf{v} \\ \mu \mathbf{v} & M_{\chi}^{-1/3} \end{pmatrix}$$

NSI in Leptoquark: Colored Zee Model

• Neutrino masses:

2-loop Leptoquark Model

Same as before as it assumes Ω ~ (3, 2, 1/6) and χ^{-1/3}~ (3, 1, -1/3)
 χ^{-1/3} coupling is modified

$$\mathcal{L}_{y} = Y_{ij}L_{i}d_{j}^{c}\Omega + F_{ij}e_{i}^{c}u_{j}^{c}\chi^{-1/3} + h.c.$$

- Note F_{ij} do not lead to NSI.
- M_{ν} arises at 2-loops: Replace leptons by quarks in Zee-Babu Model

KNT Leptoquark Model

• Replace leptons by quarks

$$\mathcal{L}_{y} = fLQ\chi_{1}^{*1/3} + d^{c}N\chi_{2}^{-1/3} + \frac{1}{2}M_{N}NN$$

Collider constraints on h^{\pm} **mass**

- New Physics at sub-TeV scale is highly constrained from direct prompt searches as well as indirect searches.
- Direct searches: we can put bound on *h*⁺ mass by looking at the final state (leptons + missing energy)
 - Some supersymmetirc searches (Stau, Selectron) exactly mimics the charged higgs searches.
 - Dominant production mechanisms in LEP are:

Constraints on Light Charged Scalar

• The lowest charged higgs allowed is 82 GeV with $y_{ee} = 0$.

• The lowest charged higgs allowed is 94 GeV with $y_{\alpha e} = 1$.

Constraints from SM Higgs Observables

• The signal strength is expressed as:

$$\mu_f^i = \frac{\sigma^i \cdot BR_f}{(\sigma^i)_{SM} \cdot (BR_f)_{SM}} = \mu^i \cdot \mu_f$$

• The effective coupling $\mu_{eff}(hh^{\pm}h^{\mp})$ parameterized as:

$$\mu_{eff} = -\sqrt{2}\mu\sin\varphi\cos\varphi + \lambda_3 v\sin^2\varphi + \lambda_8 v\cos^2\varphi$$

• λ_3 term is suppressed by $\sin^2 \varphi$

Constraints from SM Higgs Observables

Contanct Interaction Constraints on Neutral Higgs

- At LEP experiment, e^+e^- collision above the Z boson mass imposes significant constraints on contact interactions involving e^+e^- and fermion pair.
- An effective Lagrangian has the form:

$$\mathcal{L}_{eff} = \frac{4\pi}{\Lambda^2 (1 + \delta_{ef})} \sum_{i,j=L,R} \eta^f_{ij} (\bar{e}_i \gamma^\mu e_i) (\bar{f}_j \gamma_\mu f_j)$$

$\frac{m_H}{ y_{e\mu} \cos\varphi} > 1.577 \text{ TeV},$	$\frac{m_H}{ y_{e\tau} \cos\varphi} > 438.9 \text{ GeV},$
$\frac{m_H}{ y_{ee} \cos\varphi} > 1.994 \text{ TeV}$	

Bound from EW Precision Constraints

Bound from EW Precision Constraints

Lepton Flavor Violation

- Lepton number(*L*) is an accidental discrete or Abelian symmetry of the standard model (SM)
- Lepton flavor violation (LFV) is transition between e, μ, τ sectors that violates lepton family number.
- Detection of LFV signals \implies clear evidence for BSM

LFV Constraints in Zee Model

• The presence of the second Higgs doublet gives rise to tree-level trilepton decays $l_i \rightarrow l_j l_k l_l$

Process	Exp. bound	Constraint
$\mu^- \to e^+ e^- e^-$	Br. < 1.0×10^{-12}	$\frac{ y_{\mu e}^* y_{ee} }{m_H^2} < 6.6 \times 10^{-11} \text{GeV}^{-2}$
$\tau^- \rightarrow e^+ e^- e^-$	Br. < 2.7×10^{-8}	$\frac{ y_{\tau e}^* y_{ee} }{m_H^2} < 2.4 \times 10^{-9} \text{GeV}^{-2}$
$\tau^- ightarrow e^+ \mu^- \mu^-$	Br. < 1.7×10^{-8}	$\frac{ y_{\tau\mu}^* y_{\mu e} }{m_{H}^2} < 2.04 \times 10^{-9} \text{GeV}^{-2}$
$\tau^- \rightarrow e^+ e^- \mu^-$	Br. < 1.8×10^{-8}	$\frac{ y_{\tau\mu}^* y_{ee} }{m_{\mu}^2} < 2.12 \times 10^{-9} \text{GeV}^{-2}$
$\tau^- ightarrow \mu^+ e^- e^-$	Br. < 1.5×10^{-8}	$\frac{ y_{\tau e}^* y_{e\mu} }{m_{H}^2} < 1.8 \times 10^{-9} \text{GeV}^{-2}$
$\tau^- \to \mu^+ \mu^- \mu^-$	Br. < 2.1×10^{-8}	$\frac{ y_{\tau\mu}^* y_{\mu\mu} }{m_{H}^2} < 2.21 \times 10^{-9} \text{GeV}^{-2}$
$\tau^- ightarrow \mu^+ e^- \mu^-$	Br. $< 2.7 \times 10^{-8}$	$\frac{ y_{\tau\mu}^{*,*}y_{e\mu} }{m_{H}^{2}} < 3 \times 10^{-9} \text{GeV}^{-2}$

• These tree-level processes do not restrict the parameter space as much as $l_i \rightarrow l_j \gamma$

LFV Constraints in Zee Model

- One of the most constrained cLFV process is the radiative process $l_i \rightarrow l_j \gamma$
- This process always arises at loop level

Process	Exp. bound	Constraint
$e ightarrow e \gamma$	$\delta(g-2)_e < 1.34 \times 10^{-12}$	$\frac{\sin^2 \varphi}{m_{h^+}^2} (y_{ee} ^2 + y_{\mu e} ^2 + y_{\tau e} ^2) < \frac{5.092 \times 10^{-3}}{\text{GeV}^2}$
$\mu \to \mu \gamma$	$\delta(g-2)_{\mu} < 3.64 \times 10^{-9}$	$\frac{\sin^2 \varphi}{m_{h+}^2} (y_{e\mu} ^2 + y_{\mu\mu} ^2 + y_{\tau\mu} ^2) < \frac{3.155 \times 10^{-5}}{\text{GeV}^2}$
$\mu ightarrow e \gamma$	Br. $< 4.2 \times 10^{-13}$	$= \frac{\sin^4 \varphi}{m_{h^+}^4} (y_{ee}^* y_{e\mu} ^2 + y_{\mu e}^* y_{\mu\mu} ^2 + y_{\tau e}^* y_{\tau\mu} ^2) < \frac{9.52 \times 10^{-18}}{\text{GeV}^4}$
$\tau \to e \gamma$	Br. < 3.3×10^{-8}	$\frac{\sin^4 \varphi}{m_{\mu^+}^4} (y_{ee}^* y_{e\tau} ^2 + y_{\mu e}^* y_{\mu\tau} ^2 + y_{\tau e}^* y_{\tau\tau} ^2) < \frac{3.91 \times 10^{-12}}{\text{GeV}^4}$
$\tau \to \mu \gamma$	Br. < 4.4×10^{-8}	$\left \frac{\sin^{4} \varphi}{m_{h^{\pm}}^{4}} (y_{e\mu}^{*} y_{e\tau} ^{2} + y_{\mu\mu}^{*} y_{\mu\tau} ^{2} + y_{\tau\mu}^{*} y_{\tau\tau} ^{2}) < \frac{5.25 \times 10^{-12}}{\text{GeV}^{4}} \right $

Numerical results for NSI

 $\varepsilon_{ee}^{\max} \approx 11\%$

 $\varepsilon_{\mu\mu}^{\rm max} \approx 20\%$

 $\varepsilon_{\tau\tau}^{\rm max} \approx 150\%$

 $\varepsilon_{\mu\tau}^{\rm max} \approx 2.5\%$

 $\varepsilon_{e\tau}^{\max} \approx 2.5\%$

Consistency with Neutrino Oscillation Data

Numerical results for Leptoquark Colored Zee Model

- Considering the pair-production channel, the current CMS limits on leptoquark masses are 1.43 TeV for first generation, 1.25 TeV for second generation, and 1.02 TeV for third generation.
- Constraints on Yukawa $y_{\alpha i}$
 - μ → eγ: No significant constraints due to cancellations. This suppresses amplitude by m²_b << 1
 μ → 3e
 |y₁₃y₂₃| < 7.6 × 10⁻³
 M_ω = 1TeV

• $\mu - e$ conversion

 $|y_{11}y_{21}| < 3.3 \times 10^{-7}$ $M_{\omega} = 1 TeV$

•
$$\tau^- \to e^- \eta$$
 and $\tau^- \to \mu^- \eta$

$$|y_{12}y_{32}| < 1.2 \times 10^{-2} (\frac{M_{\omega}}{300 GeV})^2$$
 $|y_{22}y_{32}| < 1.0 \times 10^{-2} (\frac{M_{\omega}}{300 GeV})^2$

• Atomic Parity Violation constraints:

$$y_{11} < 0.03 \frac{M_{\omega}^{2/3}}{100 GeV}$$
 $y_{11}' < 0.03 \frac{M_{\chi}}{100 GeV}$

ϵ_{ee}, *ϵ_{eµ}*, and *ϵ_{eτ}* cannot be too large as one *y_{e1}* factor is order 0.3 for 1
 TeV Leptoquark mass

$$\varepsilon_{ee} \approx 0.33\%$$
 $\varepsilon_{e\mu} = 2.2\%$ $\varepsilon_{e\tau} = 2.2\%$
 $\varepsilon_{\mu\mu} = 14.7\%$ $\varepsilon_{\mu\tau} \approx 14.7\%$ $\varepsilon_{\tau\tau} \approx 14.7\%$

Conclusion

- Matter NSI in the radiative mass models has been studied.
- Mass as low as 82 GeV for the charged scalar is shown to be consistent with direct and indirect limits from LEP and LHC.
- Diagonal NSI in Zee Model are allowed to be as large as (11 %, 20 %, 150 %) for (ε_{ee}, ε_{μμ}, ε_{ττ}), while off-diagonal NSIs are allowed to be (-, 2.5 %, 2.5 %) for (ε_{eμ}, ε_{eτ}, ε_{μτ}).
- NSI in leptoquark models are studied.
- Radiative neutrino mass model allows parameters which are in good agreement with the neutrino oscillation experiments

Thank You

Dune Projected Limits

NSI Parameter	300 Kt.MW.yr bound ($\leq 90\%$)	850 Kt.MW.yr bound ($\leq 90\%$)
$\varepsilon_{e\mu}$	$-0.025 \rightarrow +0.052$	-0.017 ightarrow +0.04
$\varepsilon_{e\tau}$	$\textbf{-}0.055 \rightarrow +0.023$	-0.042 ightarrow +0.012
$\varepsilon_{\mu\tau}$	-0.015 ightarrow +0.013	-0.01 ightarrow +0.01
ε_{ee}	-0.185 ightarrow +0.38	-0.13 ightarrow +0.185
$\varepsilon_{\mu\mu}$	$-0.29 \rightarrow +0.39$	$-0.192 \rightarrow +0.24$
$\varepsilon_{\tau\tau}$	$-0.36 \rightarrow +0.145$	-0.12 ightarrow +0.095