

Global Fit Constraints on NSI

Iván Martínez Soler

Based on paper: I. Esteban, M.C. Gonzalez-Garcia, M. Maltoni, I. Martinez-Soler, J. Salvado, JHEP 1808 (2018) 180, arXiv:1805.04530.

NTN Workshop on Neutrino Non-Standard Interactions

May 29th, 2019

Motivation: 3ν mixing

▶ In SM, neutrinos are massless.

Nobel Lecture, Rev. Mod. Phys. $88,\,030501$

 The experiments established that neutrinos are massive particles.

Motivation: Neutrino Non-Standard Interactions

SM can be considered as a low energy effective model.

$$\mathcal{L}_{eff} = \mathcal{L}_{SM} + \frac{\mathcal{L}_{d=5}}{\Lambda} + \frac{\mathcal{L}_{d=6}}{\Lambda^2} + \cdots$$

• For d = 5. Weinberg operator.

▶ For d = 6. NSI

$$\mathcal{L}_{CC-NSI} = -2\sqrt{2}G_F \sum_{f,f',P,\alpha,\beta} \epsilon_{\alpha\beta}^{ff'P} \left(\bar{\nu}_{\alpha}\gamma^{\mu}P_L l_{\beta}\right) \left(\bar{f}'\gamma_{\mu}Pf\right)$$
$$\mathcal{L}_{NC-NSI} = -2\sqrt{2}G_F \sum_{f,P,\alpha,\beta} \epsilon_{\alpha\beta}^{fP} \left(\bar{\nu}_{\alpha}\gamma^{\mu}P_L \nu_{\beta}\right) \left(\bar{f}\gamma_{\mu}Pf\right)$$

Motivation: Neutrino Non-Standard Interactions

SM can be considered as a low energy effective model.

$$\mathcal{L}_{eff} = \mathcal{L}_{SM} + \frac{\mathcal{L}_{d=5}}{\Lambda} + \frac{\mathcal{L}_{d=6}}{\Lambda^2} + \cdots$$

- For d = 5. Weinberg operator.
- ▶ For d = 6. NSI
- ▶ We will focus

$$\mathcal{L}_{NC-NSI} = -2\sqrt{2}G_F \sum_{f,P,\alpha,\beta} \epsilon^{fP}_{\alpha\beta} \left(\bar{\nu}_{\alpha} \gamma^{\mu} P_L \nu_{\beta} \right) \left(\bar{f} \gamma_{\mu} P f \right)$$

Described by effective four-fermion operators

$$\mathcal{L}_{NC-NSI} = -2\sqrt{2}G_F \sum_{f,P,\alpha,\beta} \epsilon^{fP}_{\alpha\beta} \left(\bar{\nu}_{\alpha} \gamma^{\mu} P_L \nu_{\beta} \right) \left(\bar{f} \gamma_{\mu} P f \right)$$

▶ Not gauge invariant

 Charged lepton flavour violation (CLFV) processes impose tight constraints

[Phys. Rev. D79 (2009) 013007, Nucl. Phys. B810 (2009) 369-388, Phys. Rev. D90 (2014) 053005]

How we can avoid the constraints?

Described by effective four-fermion operators

$$\mathcal{L}_{NC-NSI} = -2\sqrt{2}G_F \sum_{f,P,\alpha,\beta} \epsilon^{fP}_{\alpha\beta} \left(\bar{\nu}_{\alpha} \gamma^{\mu} P_L \nu_{\beta} \right) \left(\bar{f} \gamma_{\mu} P f \right)$$

- ▶ Not gauge invariant
- Charged lepton flavour violation (CLFV) processes impose tight constraints

[Phys. Rev. D79 (2009) 013007, Nucl. Phys. B810 (2009) 369-388, Phys. Rev. D90 (2014) 053005]

How we can avoid the constraints?

 NSI generated well below the EW scale [Phys.Rev.D70 (2004) 055007, Phys.Lett.B748 (2015) 311-315, JHEP 1712 (2017) 096]

- ▶ NSI-NC modify the forward -coherent scattering in regions with matter
- ▶ The matter potential can be generalized

$$V_{mat} = \sqrt{2}G_F N_e(x) \begin{pmatrix} 1 + \epsilon_{ee} & \epsilon_{e\mu} & \epsilon_{e\tau} \\ \epsilon^*_{e\mu} & \epsilon_{\mu\mu} & \epsilon_{\tau\mu} \\ \epsilon^*_{e\tau} & \epsilon^*_{\mu\tau} & \epsilon_{\tau\tau} \end{pmatrix}$$
$$\epsilon_{\alpha\beta}(x) = \sum_{f=e,u,d} \frac{N_f(x)}{N_e(x)} (\epsilon^{f,L}_{\alpha\beta} + \epsilon^{f,R}_{\alpha\beta})$$

$$V_{mat} = \sqrt{2}G_F N_e(x) \begin{pmatrix} 1 + \epsilon_{ee} & \epsilon_{e\mu} & \epsilon_{e\tau} \\ \epsilon^*_{e\mu} & \epsilon_{\mu\mu} & \epsilon_{\tau\mu} \\ \epsilon^*_{e\tau} & \epsilon^*_{\mu\tau} & \epsilon_{\tau\tau} \end{pmatrix}$$

• Oscillation experiments are sensitive to $\epsilon_{ee}^f - \epsilon_{\mu\mu}^f$ and $\epsilon_{\tau\tau}^f - \epsilon_{\mu\mu}^f$

- ▶ We restrict to NSI with quarks.
- Assuming neutral matter

$$\epsilon_{\alpha\beta}(x) = \epsilon_{\alpha\beta}^p + Y_n(x)\epsilon_{\alpha\beta}^n \qquad Y_n = N_n(x)/N_e(x)$$

- For the Earth, $Y_n = 1.137$ (core) and $Y_n = 1.012$ (mantle)
- For the Sun $Y_n \in [1/2, 1/6]$

The results are obtained under the approximation

$$\epsilon_{\alpha\beta}(x) = \sum_{f=e,u,d} \frac{N_f(x)}{N_e(x)} \epsilon_{\alpha\beta}^{\eta} \xi^f$$

- $\epsilon^{\eta}_{\alpha\beta}$ is a common factor to all the couplings of all the fermions;
- the relative value between the different ξ^f is parametrized in term of an angle η ;
- ▶ the couplings with protons and neutrons are given by

Neutrino evolution in the presence of NSI

Neutrino evolution is described by the Schrödinger equation

$$i\frac{d\vec{\nu}}{dt} = \frac{1}{2E} \begin{bmatrix} U^{\dagger} Diag(0, \Delta m_{21}^2, \Delta m_{31}^2)U \pm V_{mat} \end{bmatrix} \vec{\nu} \qquad \vec{\nu} = (\nu_e \nu_{\mu} \nu_{\tau})^T$$

Evolution in vacuum

$$V_{mat} = \sqrt{2}G_F N_e(x) \begin{pmatrix} 1 + \epsilon_{ee} & \epsilon_{e\mu} & \epsilon_{e\tau} \\ \epsilon^*_{e\mu} & \epsilon_{\mu\mu} & \epsilon_{\tau\mu} \\ \epsilon^*_{e\tau} & \epsilon^*_{\mu\tau} & \epsilon_{\tau\tau} \end{pmatrix}$$

Neutrino evolution in the presence of NSI

Neutrino evolution is described by the Schrödinger equation

$$i\frac{d\vec{\nu}}{dt} = \frac{1}{2E} \left[U^{\dagger}Diag(0,\Delta m_{21}^2,\Delta m_{31}^2)U \pm V_{mat} \right] \vec{\nu}$$

$$U = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta_{cp}} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta_{cp}} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

- ▶ Depends on:
 - three mixing angles (θ₁₂, θ₁₃, θ₂₃) and a complex phase (δ_{cp});
 two mass splittings (Δm²₂₁ ~ 10⁻⁵eV² and Δm²₃₁ ~ 10⁻³eV²)

 - $\epsilon_{\alpha\beta}$: five real parameters and three phases.

Two possible mass hierarchies

CPT symmetry

 \blacktriangleright In vacuum the hamiltonian is degenerate under the transformation $H^\nu_{vac}\to -(H^\nu_{vac})^*$

2

$$\begin{array}{rcl} \Delta m_{31}^2 & \rightarrow & -\Delta m_{32}^2 \\ \theta_{12} & \rightarrow & \pi/2 - \theta_{12} \\ \delta_{cp} & \rightarrow & \pi - \delta_{cp} \end{array}$$

▶ The degeneracy is broken in matter.

CPT symmetry

▶ In the presence of NSI, we can recover the same degeneracy in matter

$$\begin{bmatrix} \epsilon_{ee}(x) - \epsilon_{\mu\mu}(x) \end{bmatrix} \rightarrow -\begin{bmatrix} \epsilon_{ee}(x) - \epsilon_{\mu\mu}(x) \end{bmatrix} - 2 \\ \begin{bmatrix} \epsilon_{\tau\tau}(x) - \epsilon_{\mu\mu}(x) \end{bmatrix} \rightarrow -\begin{bmatrix} \epsilon_{\tau\tau}(x) - \epsilon_{\mu\mu}(x) \end{bmatrix} \\ \epsilon_{\alpha\beta}(x) \rightarrow -\epsilon^*_{\alpha\beta}(x) \quad (\alpha \neq \beta)$$

- $\blacktriangleright \hspace{0.1 cm} H^{\nu} \rightarrow (H^{\nu})^{*}$
- ▶ The degeneracy is exact for $\epsilon_{\alpha\beta}$ independent of x
- ▶ LMA-D solution.

What is our current knowledge of $\epsilon_{\alpha\beta}$?

Backup:Solar neutrinos and KamLAND in the presence of NSI

 \blacktriangleright In the presence of NSI, $P_{eff}^{2\nu}$ is obtained by solving the effective hamiltonian

$$H_{vac}^{eff} = \frac{\Delta m_{21}^2}{4E} \begin{pmatrix} -\cos 2\theta_{12} & \sin 2\theta_{12}e^{i\delta_{cp}} \\ -\sin 2\theta_{12}e^{-i\delta_{cp}} & \cos 2\theta_{12} \end{pmatrix}$$
$$H_{mat}^{eff} = \sqrt{2}G_F N_e(x) \left[\begin{pmatrix} c_{13}^2 & 0 \\ 0 & 0 \end{pmatrix} + [\xi^p + Y_n(x)\xi^n] \begin{pmatrix} -\epsilon_D^\eta & \epsilon_N^\eta \\ \epsilon_N^{\eta*} & \epsilon_D^\eta \end{pmatrix} \right]$$

- ▶ NSI effects are described by the effective parameters ϵ_D^{η} and ϵ_N^{η}
- Shows a high dependence of η .
- ▶ We assume real NSI

- LMA-D exist for $-27^{\circ} \leq \eta \leq 72^{\circ}$ at 90% CL
 - ▶ In the ranges $\eta \leq -40^{\circ}$ and $\eta \geq 86^{\circ}$ LMA-D solution is not compatible with KamLAND
- θ_{12} can take smaller values.
 - A non-zero ϵ_N^{η} can compensate the flavor transition.
- The largest values of $\epsilon^{\eta}_{\alpha\beta}$ modify the determination of Δm_{21}^2 by KamLAND.

- ϵ_N^{η} and ϵ_D^{η} are linear combination of $\epsilon_{\alpha\beta}^{\eta}$.
- Strong dependence with η .
- For $\eta = 0 \to \epsilon_{\alpha\beta}^n = 0$
- For $\eta = \pm 90^{\circ} \rightarrow \epsilon^{p}_{\alpha\beta} = 0$

 $\blacktriangleright \ \epsilon^f_{\alpha\beta} \geq 1$

- For $\eta = 0 \rightarrow \epsilon_{\alpha\beta}^n = 0$
- ▶ The degeneracy is exact.

- ► For $-70^{\circ} \le \eta \le -60^{\circ}$ the contribution of the NSI to the solar matter potential cancel.
- $\blacktriangleright \ |\epsilon^n_{\alpha\beta}|/|\epsilon^p_{\alpha\beta}|\sim 2$

$$\epsilon_{\alpha\beta}(x) = \epsilon^p_{\alpha\beta}(x) + Y_n \epsilon^n_{\alpha\beta}(x) \to 0$$

- NSI improves the agreement between solar and KamLAND.
 - The tension in Δm_{21}^2 is reduced in the whole η range (~ 2.5 σ).

- LMA provides a better fit than LMA-D in the whole range of η.
- LMA-D is disfavored at more than 3σ when $\eta \leq -40^{\circ}$ or $\eta \geq 86^{\circ}$.

Terrestrial experiments

Atmospheric neutrinos.

▶ Created in the collisions of cosmic rays with the atmosphere.

$$\begin{aligned} \pi^{\pm} &\to \mu^{\pm} + \nu_{\mu}(\overline{\nu_{\mu}}) \\ K^{\pm} &\to \mu^{\pm} + \nu_{\mu}(\overline{\nu_{\mu}}) \\ \mu^{\pm} &\to e^{\pm} + \nu_{e}(\overline{\nu_{e}}) + \nu_{\mu}(\overline{\nu_{\mu}}) \end{aligned}$$

- Super-K ($E_{\nu} \in [\sim 0.5, \sim 10]$ GeV)
- DeepCore $(E_{\nu} \in [6, 56] \text{ GeV})$
- IceCube $(E_{\nu} \in [0.1, 20] \text{ TeV})$

Terrestrial experiments

Long-baseline accelerators

► $\nu_e/\overline{\nu}_e$ and $\nu_\mu/\overline{\nu}_\mu$ with $E_\nu \in [0.6-7]$ GeV (T2K:~ 0.6 GeV, NO ν A: ~ 2 GeV, MINOS: ~ 3 GeV)

 The baseline is ~ 100 km (T2K:~ 295 km, NOνA: ~ 810 km MINOS: ~ 735 km)

► $\nu_{\mu} \rightarrow \nu_{\mu}$ (T2K, NO ν A, MINOS), $\nu_{\mu} \rightarrow \nu_{e}$ (MINOS)

Terrestrial experiments

Reactor experiments

- $\overline{\nu}_e$ emitted from fission reactions;
- the energy spectrum expand from 1.8 MeV to 8 MeV;
- baselines ~ 1 Km;
- ▶ insensitive to matter effects;
- determine with high precision θ_{13} and Δm_{31}^2 .

NSI formalism in the Earth

We parametrize the matter potential as

$$V_{mat} = \sqrt{2}G_F N_e(x) \begin{pmatrix} 1 + \epsilon_{ee} & \epsilon_{e\mu} & \epsilon_{e\tau} \\ \epsilon^*_{e\mu} & \epsilon_{\mu\mu} & \epsilon_{\tau\mu} \\ \epsilon^*_{e\tau} & \epsilon^*_{\mu\tau} & \epsilon_{\tau\tau} \end{pmatrix} = Q_{rel} U_{mat} D_{mat} U^{\dagger}_{mat} Q^{\dagger}_{rel}$$

$$D_{mat} = \sqrt{2G_F N_e(x) diag(\epsilon_{\oplus}, \epsilon'_{\oplus}, 0)}.$$
$$U_{mat} = R(\psi_{12}) R(\psi_{13}) R(\psi_{23}, \delta_{NS}).$$

•
$$Q_{rel} = diag(e^{i\alpha_1}, e^{i\alpha_2}, e^{-i(\alpha_1 + \alpha_2)}).$$

NSI formalism in the Earth

We parametrize the matter potential as

$$V_{mat} = \sqrt{2}G_F N_e(x) \begin{pmatrix} 1 + \epsilon_{ee} & \epsilon_{e\mu} & \epsilon_{e\tau} \\ \epsilon^*_{e\mu} & \epsilon_{\mu\mu} & \epsilon_{\tau\mu} \\ \epsilon^*_{e\tau} & \epsilon^*_{\mu\tau} & \epsilon_{\tau\tau} \end{pmatrix} = Q_{rel} U_{mat} D_{mat} U^{\dagger}_{mat} Q^{\dagger}_{rel}$$

In order to simplify the analysis:

• We impose $\epsilon'_{\oplus} = 0$ (weak constraints)

$$D_{mat} = \sqrt{2}G_F N_e(x) diag(\epsilon_{\oplus}, 0, 0)$$

• If $\epsilon'_{\oplus} \to 0$, U_{mat} is independent of ψ_{23} and δ_{NS}

$$U_{mat} = R(\psi_{12})R(\psi_{13})$$

• We assume real NSI, $\alpha_1 = \alpha_2 = 0$

Results from the global analysis

Results from the global analysis

- ▶ No bounds over ϵ_{\oplus} due to the lack of matter effect on the ν_e sector.
- ▶ No bounds on the $(\varphi_{12}, \varphi_{13})$ plane.
- ▶ The main sensitivity for $|\epsilon_{\oplus}| \sim 0.1 1$ comes from IceCube data

$$P_{\mu\mu} \simeq 1 - \sin^2 2\varphi_{\mu\mu} \sin^2 \left(\frac{d_e(\Omega_{\nu})\epsilon_{\oplus}}{2} \right)$$
$$\sin^2 \varphi_{\mu\mu} = \sin^2 \varphi_{12} \cos^2 \varphi_{13}$$

Results from the global analysis

The results rely on the complementarity and synergies between the different data sets.

Results from the global analysis

$$\begin{split} \epsilon^{p}_{ee} &- \epsilon^{p}_{\mu\mu} \in [-3.3, -1.9] \\ \epsilon^{p}_{\tau\tau} &- \epsilon^{p}_{\mu\mu} \in [-0.4, 0.4] \\ &\epsilon^{p}_{e\mu} \in [-0.18, 0.18] \\ &\epsilon^{p}_{e\tau} \in [-0.95, 0.95] \\ &\epsilon^{p}_{\mu\tau} \in [-0.035, 0.035] \end{split}$$

21/38

Coherent Elastic Scattering

- COHERENT report the observation of coherent neutrino-nucleus scattering at 6.7σ [1].
- Neutrino flux created by pion decay at rest $(\pi^+ \to \mu^+ \nu_\mu)$
 - Monocromatic ν_{μ} flux with $E_{\nu} \sim 30$ MeV
 - Continuous spectrum of $\overline{\nu}_{\mu}$ and ν_e from μ^+ decay
- Stablish additional bounds on NSI-NC to oscillation experiments.

[1] Science 357 (2017) no.6356, 1123-1126

COHERENT data analysis

▶ The number of events

$$N_{NSI} = \gamma \left[f_{\nu_e} Q_{we}^2 + (f_{\nu_{\mu}} + f_{\nu_{\bar{\mu}}}) Q_{w\mu}^2 \right]$$

• $Q^2_{w\alpha}$ encode the coupling with NSI

$$Q^2_{w\alpha} \sim \left[(g^V_p + Y^{coh}_n g^V_n) + \epsilon^{coh}_{\alpha\alpha} \right]^2 + \sum_{\beta \neq \alpha} (\epsilon^{coh}_{\alpha\beta})^2$$

• COHERENT data set independent bounds on the diagonal NSI couplings $(\epsilon_{\alpha\alpha})$.

COHERENT curtail the LMA-D solution

Combined analysis of oscillation and COHERENT

▶ LMA-D solution is strongly disfavor when COHERENT is included.

Combined analysis of oscillation and COHERENT

▶ Non-diagonal couplings are also reduced.

Conclusions

- We present an updated constraints over the size and the flavor structure of NSI-NC.
- In the analysis we combine the information of a global oscillation analysis with the recent results of COHERENT.
- ▶ LMA-D is allowed at 3σ for $-38^{\circ} \le \eta \le 14^{\circ}$.
- $|\epsilon^p_{\alpha\alpha}| \sim 2$ and $|\epsilon^p_{\alpha\beta}| \sim 0.8$

Thank you!

Backup: matter potential in the Sun and for KamLAND

Relation between the solar effective parameters and $\epsilon^{\eta}_{\alpha\beta}$.

$$\begin{split} \varepsilon_D^{\eta} &= c_{13} s_{13} \operatorname{Re} \left(s_{23} \, \varepsilon_{e\mu}^{\eta} + c_{23} \, \varepsilon_{e\tau}^{\eta} \right) - \left(1 + s_{13}^2 \right) c_{23} s_{23} \operatorname{Re} \left(\varepsilon_{\mu\tau}^{\eta} \right) \\ &- \frac{c_{13}^2}{2} \left(\varepsilon_{ee}^{\eta} - \varepsilon_{\mu\mu}^{\eta} \right) + \frac{s_{23}^2 - s_{13}^2 c_{23}^2}{2} \left(\varepsilon_{\tau\tau}^{\eta} - \varepsilon_{\mu\mu}^{\eta} \right), \\ \varepsilon_N^{\eta} &= c_{13} \left(c_{23} \, \varepsilon_{e\mu}^{\eta} - s_{23} \, \varepsilon_{e\tau}^{\eta} \right) + s_{13} \left[s_{23}^2 \, \varepsilon_{\mu\tau}^{\eta} - c_{23}^2 \, \varepsilon_{\mu\tau}^{f,V*} + c_{23} s_{23} \left(\varepsilon_{\tau\tau}^{\eta} - \varepsilon_{\mu\mu}^{\eta} \right) \right]. \end{split}$$

Backup: solar and KamLAND

- ► For $-70^{\circ} \le \eta \le -60^{\circ}$ NSI contribution to the matter potential in the Sun almost vanish.
 - Small constraint from solar data to NSI in that η range.
 - NSI parameters can take higher values.
- ▶ NSI can modify the neutrino propagation in KamLAND and so the determination of Δm_{21}^2 .
 - The best agreement between KamLAND and the solar determination of Δm^2_{21} is found for $\eta = -64^\circ$

OSC			+COHERENT		
	LMA	$\rm LMA \oplus \rm LMA\text{-}D$		LMA	$\rm LMA \oplus \rm LMA\text{-}D$
_c u _c u	[0.020 + 0.456]	∞ 1 102 0 802]	ε^{u}_{ee}	[-0.008, +0.618]	[-0.008, +0.618]
$c_{ee} - c_{\mu\mu}$	$[-0.020, \pm 0.430]$	$\oplus [-1.192, -0.302]$	$\varepsilon^{u}_{\mu\mu}$	[-0.111, +0.402]	$\left[-0.111, +0.402\right]$
$c_{\tau\tau} - c_{\mu\mu}$	$[-0.003, \pm 0.130]$	$[-0.152, \pm 0.150]$	$\varepsilon^u_{\tau\tau}$	[-0.110, +0.404]	$\left[-0.110, +0.404\right]$
$\varepsilon^{u}_{e\mu}$	$\left[-0.060, +0.049 ight]$	$\left[-0.060, +0.067 ight]$	$\varepsilon^{u}_{e\mu}$	$\left[-0.060, +0.049 ight]$	$\left[-0.060, +0.049\right]$
$\varepsilon^u_{e\tau}$	$\left[-0.292, +0.119\right]$	$\left[-0.292, +0.336 ight]$	$\varepsilon^u_{e\tau}$	$\left[-0.248, +0.116 ight]$	$\left[-0.248, +0.116\right]$
$\varepsilon^{u}_{\mu\tau}$	$\left[-0.013, +0.010\right]$	$\left[-0.013, +0.014 ight]$	$\varepsilon^u_{\mu\tau}$	$\left[-0.012, +0.009 ight]$	$\left[-0.012, +0.009 ight]$
ed _ed	$[-0.027 \pm 0.474]$	$\oplus [-1.939 - 1.111]$	ε^d_{ee}	$\left[-0.012, +0.565\right]$	$\left[-0.012, +0.565\right]$
$\varepsilon_{ee}^{ee} \varepsilon_{\mu\mu}$	[-0.005, +0.095]	0 [1.202, 1.111] [-0.013 +0.095]	$\varepsilon^d_{\mu\mu}$	$\left[-0.103, +0.361 ight]$	$\left[-0.103, +0.361\right]$
$c_{\tau\tau} c_{\mu\mu}$	[-0.005, +0.055]	[-0.013, +0.033]	$\varepsilon^d_{\tau\tau}$	$\left[-0.102, +0.361\right]$	$\left[-0.102, +0.361\right]$
$\varepsilon^d_{e\mu}$	$\left[-0.061, +0.049 ight]$	$\left[-0.061, +0.073 ight]$	$\varepsilon^d_{e\mu}$	$\left[-0.058, +0.049 ight]$	$\left[-0.058, +0.049 ight]$
$\varepsilon^d_{e\tau}$	$\left[-0.247, +0.119 ight]$	$\left[-0.247, +0.119 ight]$	$\varepsilon^d_{e\tau}$	$\left[-0.206, +0.110\right]$	$\left[-0.206, +0.110\right]$
$\varepsilon^d_{\mu\tau}$	[-0.012, +0.009]	[-0.012, +0.009]	$\varepsilon^d_{\mu\tau}$	[-0.011, +0.009]	[-0.011, +0.009]
$\varepsilon^p - \varepsilon^p$	$[-0.041 \pm 1.312]$	$\oplus [-3 327 -1 958]$	ε_{ee}^p	$\left[-0.010, +2.039 ight]$	$\left[-0.010, +2.039\right]$
$\varepsilon^{p} - \varepsilon^{p}$	[-0.015 + 0.426]	$\bigcirc [-0.424 + 0.426]$	$\varepsilon^p_{\mu\mu}$	$\left[-0.364, +1.387 ight]$	$\left[-0.364,+1.387 ight]$
$c_{\tau\tau}$ $c_{\mu\mu}$	[0.010, [0.420]	[0.121, [0.120]	$\varepsilon^p_{\tau\tau}$	$\left[-0.350, +1.400 ight]$	$\left[-0.350, +1.400\right]$
$\varepsilon^p_{e\mu}$	[-0.178, +0.147]	$\left[-0.178, +0.178 ight]$	$\varepsilon^p_{e\mu}$	[-0.179, +0.146]	[-0.179, +0.146]
$\varepsilon^p_{e\tau}$	$\left[-0.954, +0.356 ight]$	$\left[-0.954, +0.949 ight]$	$\varepsilon^p_{e\tau}$	[-0.860, +0.350]	$\left[-0.860, +0.350 ight]$
$\varepsilon^p_{\mu\tau}$	[-0.035, +0.027]	[-0.035, +0.035]	$\varepsilon^p_{\mu\tau}$	[-0.035, +0.028]	[-0.035, +0.028]

Backup: Combined analysis of oscillation and COHERENT

$$\begin{split} \epsilon^p_{ee} &\in [-0.01, 2.0] \\ \epsilon^p_{\mu\mu} &\in [-0.4, 1.4] \\ \epsilon^p_{\mu\mu} &\in [-0.35, 1.4] \\ \epsilon^p_{e\mu} &\in [-0.18, 0.14] \\ \epsilon^p_{e\tau} &\in [-0.86, 0.35] \\ \epsilon^p_{\mu\tau} &\in [-0.035, 0.028] \end{split}$$

Backup:Results from the global analysis

- ▶ No bounds on the $(\varphi_{12}, \varphi_{13})$ plane.
- ▶ Bounds on (\$\varphi_{12}\$, \$\varphi_{13}\$) after considering solar and KamLAND
 - Introduce sensitivity to ν_e

Backup: Tension in Δm_{21}^2

KamLAND

- Long-baseline reactor experiment;
- $\overline{\nu}_e$ are emited with energies between 1.8 and 8 MeV;
- baseline ~ 180 km;
- ▶ matter effects are very tiny.

Backup: Tension in Δm_{21}^2

Solar neutrinos

Measurement of the low-energy 8B neutrino spectrum.

Observations indicates:

- ▶ $P_{ee} \sim 30\%$ at high energy (⁸B, hep).
- ▶ $P_{ee} \sim 60\%$ at low energy (pp, ⁷Be, CNO and low ⁸B).

Phys. Rev. D 98, 030001 (2018)

Eur.Phys.J. A52 (2016) no.4, 87

Backup: Tension in Δm_{21}^2

Solar neutrinos

Observation of a larger day/night asymmetry than predicted by KamLAND.

Phys. Rev. D94, 052010 (2016)

NSI formalism in the Earth

We parametrize the matter potential as

$$V_{mat} = \sqrt{2}G_F N_e(x) \begin{pmatrix} 1 + \epsilon_{ee} & \epsilon_{e\mu} & \epsilon_{e\tau} \\ \epsilon^*_{e\mu} & \epsilon_{\mu\mu} & \epsilon_{\tau\mu} \\ \epsilon^*_{e\tau} & \epsilon^*_{\mu\tau} & \epsilon_{\tau\tau} \end{pmatrix} = U_{mat} D_{mat} U^{\dagger}_{mat}$$

► Setting
$$N_n/N_e = Y_n(x) = Y_n^{\oplus} = 1.051$$

 $\epsilon_{\alpha\beta}^{\oplus} = \sqrt{5}(\cos\eta + Y_n^{\oplus}\sin\eta)\epsilon_{\alpha\beta}^{\eta}$

- The bounds over $\epsilon_{\alpha\beta}^{\oplus}$ are independent of η .
- $\eta = \arctan(-1/Y_n^{\oplus})$ the NSI contribution vanish.

Backup: COHERENT data analysis

The NSI coupling for COHERENT analysis

$$\epsilon_{\alpha\beta}^{coh} = \sqrt{5}(\cos\eta + Y_n^{coh}\sin\eta)\epsilon_{\alpha\beta}^{\eta}$$

- Y_n^{coh} is the average between N_{Cs}/Z_{Cs} and N_I/Z_I
- The bounds on $\epsilon_{\alpha\beta}^{coh}$ are independent of η .

• For
$$\eta = \arctan(-1/Y_n^{coh}) \approx -35.4^{\circ}$$