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Overview of 
Neutrino Flavor Models



Where Do We Stand?
• Latest 3 neutrino global analysis:
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➡evidence of θ13 ≠ 0 

➡hints of θ23 ≠ π/4 

➡expectation of Dirac CP phase δ 

Esteban, Gonzalez-Garcia, Hernandez-
Cabezudo, Maltoni, Schwetz, 1811.05487

Recent T2K result ➪ δ ≃ - π/2, 
consistent with global fit best fit 
value 
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  ☞ Majorana vs Dirac? 


  ☞ CP violation in lepton sector? 


 ☞ Absolute mass scale of neutrinos?


 ☞ Mass ordering: sign of (Δm132)?


 ☞ Precision:  θ23 > π/4,  θ23 < π/4,  θ23 = π/4 ? 


 ☞ Sterile neutrino(s)?

Open Questions - Neutrino Properties

a suite of current and upcoming experiments to address these puzzles

some can only be answered by oscillation experiments
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  ☞ Smallness of neutrino mass:

Open Questions - Theoretical

mν ≪ me, u, d

  ☞ Flavor structure:
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Fermion mass and hierarchy 

problem ➟ Many free parameters in 
the Yukawa sector of SM



Smallness of neutrino masses 

What is the operator for neutrino mass generation?

 - Majorana vs Dirac

 - scale of the operator

 - suppression mechanism
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Neutrino Mass beyond the SM

• SM: effective low energy theory


• only one dim-5 operator: most sensitive to high scale physics


• mν ~ (Δm2atm)1/2  ~ 0.1 eV with v ~ 100 GeV, λ ~ O(1) ⇒ M ~ 1014 GeV 


• Lepton number violation ∆L = 2 ➩ Majorana fermions
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L = LSM +
O5D

M
+
O6D

M2
+ ... (1)

1

new physics effects

�ij

M HHLiLj � m⇥ = �ij
v2

M

Weinberg, 1979

GUT scale
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Type-I seesaw Type-II seesaw Type-III seesaw
Seesaw model has been previously shown [11] to induce a non-unitary leptonic mixing
matrix. In this work we will explicitly analyze the issue for the other types of Seesaw
models.
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Figure 1: The three generic realizations of the Seesaw mechanism, depending on the
nature of the heavy fields exchanged: SM singlet fermions (type I Seesaw) on the left,
SM triplet scalars (type II Seesaw) and SM triplet fermions (type III Seesaw) on the
right.
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NR: SU(3)c x SU(2)w x U(1)Y ~(1,1,0)

Minkowski, 1977; Yanagida, 1979; Glashow, 1979; 

Gell-mann, Ramond, Slansky,1979; 

Mohapatra, Senjanovic, 1979; 
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Δ: SU(3)c x SU(2)w x U(1)Y ~(1,3,2)

Seesaw model has been previously shown [11] to induce a non-unitary leptonic mixing
matrix. In this work we will explicitly analyze the issue for the other types of Seesaw
models.
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nature of the heavy fields exchanged: SM singlet fermions (type I Seesaw) on the left,
SM triplet scalars (type II Seesaw) and SM triplet fermions (type III Seesaw) on the
right.
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Foot, Lew, He, Joshi, 1989; Ma, 1998
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exist seven massive physical Higgs bosons: two neutral Higgses, H1, H2, one CP
odd Higgs, A, two singlet charged Higgses, H±, and two doubly charged Higgses,
H

±±.
The generic prediction of the model is the existence of the doubly charged Hig-

gses, which couple only to the leptons, but not to the quarks. A unique signature
of this class of model is that the doubly charged Higgses decay into same sign di-
leptons (for a recent general discussion on the same sign dilepton signals at the
collider experiments, see, Ref. 9),

�±±
! `

±
`
±
, (` = e, µ, ⌧) (5)

which do not have any SM or MSSM backgrounds. As pointed out in Ref. 10, the
doubly charged Higgses can be produced at the LHC via the Drell-Yan,

qq ! �
⇤
, Z

⇤
! H

++
H

��
, qq

0
! W

⇤
! H

±±
H

⌥
. (6)

As the production of the triplet Higgs is through the gauge interactions, it is in-
dependent of the small light-heavy neutrino mixing and consequently can have un-
suppressed production cross section, in contrast to the case of the Type-I seesaw.
It has been shown that, for a triplet mass in the range of (200-1000) GeV, the cross
section can be 0.1-100 fb. With 300 fb�1, a doubly charged Higgs, �++, with mass
of 600 GeV can be discovered at the LHC.

Phenomenology associated with the triplet Higgs at a linear collider has also
been investigated11.

2.1.3. Type-III Seesaw

The Weinberg operator can also be UV completed by the mediation of a SU(2)L
triplet fermion, ⌃ = (⌃+

,⌃0
,⌃�), with zero hypercharge12. The e↵ective neutrino

mass is y2
⌫
v
2
/⇤, where y⌫ is the Dirac Yukawa coupling of the triplet lepton to the

SM lepton doublet and the Higgs and ⇤ is the lepton number violation scale. To
have ⇤ ⇠ 1 TeV, y⌫ has a value ⇠ 10�6.

Because the triplet lepton ⌃ has weak gauge interactions, their production cross
section is unsuppressed, contrary to the case of the Type-I seesaw. The signature
with relatively high rate is13

pp ! ⌃0⌃+
! ⌫W

+
W

±
`
⌥
! 4 jets + /ET + ` . (7)

As the masses of ⌃± and ⌃0 are on the order of sub-TeV region, the displaced
vertices from the primary production vertex in the ⌃0, ⌃± decays can be visible13.
The triplet lepton lifetime is related to the e↵ective neutrino mass spectrum

⌧  1 mm⇥

✓
0.05 eVP

i
mi

◆✓
100 GeV

⇤

◆2

. (8)

For the normal hierarchy case (
P

i
mi ' 0.05 eV), this leads to ⌧  1 mm for ⇤ '

100 GeV. (For other collider studies, see Ref. 14.) In addition, in the supersymmetric

ΣR: SU(3)c x SU(2)w x U(1)Y ~(1,3,0) Lazarides, 1980; Mohapatra, Senjanovic, 1980

3 possible portals
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Neutrino Mass beyond the SM



Why are neutrinos light? (Type-I) Seesaw Mechanism

• Adding the right-handed neutrinos:
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If

Minkowski, 1977;  Yanagida, 1979;  Gell-Mann, 
Ramond, Slansky, 1979; Mohapatra, Senjanovic, 1981



Grand Unification Naturally Accommodates Seesaw
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LHC neutrino mass 
from seesaw 

Fritzsch, Minkowski, 1975

Grand Unification

10

EM *

weak

strong

MGUT

Dimopoulos, Raby, Wilczek, 1981

LHC

coupling strengths run!

neutrino mass 
from seesaw 

Fritzsch, Minkowski, 1975

SO(10):
☞ origin of the heavy scale ⇒ U(1)B-L   

☞ exotic mediators ⇒ predicted in 
many GUT theories, e.g. SO(10)

Fritzsch, Minkowski, 1975



Low Scale Seesaws

• New particles:

• Type I seesaw: generally decouple from collider experiments

• Type II seesaw: 

• Type III seesaw: observable displaced vertex

• inverse seesaw: non-unitarity effects

• radiative mass generation: model dependent - singly/doubly charged 

SU(2) singlet, even colored scalars in loops

• New interactions:


• LR symmetric model: WR

• R parity violation:

• …..

TeV Scale Seesaw Models

• With new particles:

• type-I seesaw 


• generally decouple from collider physics


• type-II seesaw


• TeV scale doubly charged Higgs ⇔ small couplings

• unique signatures:


• decay BR � mass ordering


34

m⇤ ⌅= 0

yD, m⇤ ⇥ 0

MR � 100 GeV

mD � me � 10�4 GeV

⇤ V =
mD

MR
� 10�4 GeV

100 GeV
= 10�6

V > 0.01

V < 0.1

qq ⇥ �+� ��⇥ + jets (� ⌅= ⇥)

y�LL

�++ ⇥ e+e�, µ+µ�, ⌅+⌅�

1

Han, Mukhopadhyaya, Si, Wang, ‘07; Akeroyd, Aoki, Sugiyama, ‘08; ...Perez, Han, Huang, Li, Wang, ‘08; 

Kersten, Smirnov, 2007

Seesaw model has been previously shown [11] to induce a non-unitary leptonic mixing
matrix. In this work we will explicitly analyze the issue for the other types of Seesaw
models.
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 Lazarides, 1980; Mohapatra, Senjanovic, 1980

~(1,3,2)
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2

persymmetry (SUSY) with bilinear violation of R parity can be tested at the LHC in a crucial way and potentially

falsified. We identify the regions of minimal supergravity (mSUGRA) parameters, event reconstruction efficiencies and

luminosities where the LHC will be able to probe the atmospheric neutrino mixing angle with sensitivity competitive

to its low-energy determination by underground experiments, both for 7 and 14 TeV center-of-mass energies.

For the sake of definiteness, we consider the minimal supergravity model supplemented with bilinear R parity

breaking [22–24] added at the electroweak scale; we refer to this scenario as RmSUGRA. In this effective model one

typically finds that the atmospheric scale is generated at tree level by a weak-scale neutralino-exchange seesaw, while

the solar scale is induced radiatively [22]. The LSP lacks a symmetry to render it stable and, given the neutrino mass

scales indicated by oscillation experiments, typically decays inside the LHC detectors [22, 23, 25] 1. As an illustration

we depict the neutralino LSP decay length in Fig. 1. We can see from Fig. 1 that the expected decay lengths are large

enough to be experimentally resolved, leading to displaced vertex events [33, 34].

Figure 1: χ̃0
1 decay length in the plane m0,m1/2 for A0 = −100 GeV, tan β = 10 and µ > 0.

More strikingly, one finds that in such a RmSUGRA model one has a strict correlation between neutralino de-

cay properties measurable at high-energy collider experiments and neutrino mixing angles determined in low-energy

neutrino oscillation experiments, that is

tan2 θatm ≃
BR(χ̃0

1 → µ±W∓)

BR(χ̃0
1 → τ±W∓)

. (1)

The derivation of Eq. (1) can be found in [25]. In short, the relation between the neutralino decay branching ratio

and the low-energy neutrino angle in the bilinear model can be understood in the following way. At tree-level in

RmSUGRA the neutrino mass matrix is given by [22]

meff =
M1g2+M2g′

2

4 det(Mχ0)

⎛

⎜

⎝

Λ2
e ΛeΛµ ΛeΛτ

ΛeΛµ Λ2
µ ΛµΛτ

ΛeΛτ ΛµΛτ Λ2
τ

⎞

⎟

⎠
(2)

where Λi = µvi+vDϵi and ϵi and vi are the bilinear superpotential parameters and scalar neutrino vacuum expectation

value, respectively. Equation (2) is diagonalized by two angles; the relevant one for this discussion is the angle

tan θ23 = −Λµ

Λτ
. One can understand this tree-level mass as a seesaw-type neutrino mass with the right-handed

neutrino and the Yukawa couplings of the ordinary seesaw replaced by the neutralinos of the minimal supersymmetric

1 We may add, parenthetically, that such schemes require a different type of dark matter particle, such as the axion [28]. Variants with
other forms of supersymmetric dark matter, such as the gravitino [29–32], are also possible.

Mukhopadhyaya, Roy, Vissani, 1998

Franceschino, Hambye, Strumia,2008

mν ~ (Δm2atm)1/2  ~ 0.1 eV with v ~ 100 GeV, λ ~ 10-6 
⇒ M ~ 102 GeV

Talk by Tao Han
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What if neutrinos     

   are Dirac?



Naturally Light Dirac Neutrinos from SUSY 

• MSSM: many attractive features (solving gauge hierarchy problem, gauge unification) 

• Dirac neutrino mass from Kähler potential


• However, it has several problems

• mu problem:   μ << Mpl


• Giudice-Masiero mechanism

• absence of mu term in superpotential

• effective mu term (non-perturbatively) from Kähler potential


• proton decay through dim-4, dim-5 operators 

• dim-4 operators: forbidden by imposing R-parity

• dim-5 operators: severe experimental constraints on the models


• no symmetry reason for the absence of holomorphic mu term/Dirac neutrino mass
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Arkani-Hamed, Hall, Murayama, Tucker-Smith, Weiner (2001)

(i) If we require the Weinberg neutrino mass operator, i.e. 2q16+2qH = qW mod M ,
we find M = 4m, m ∈ and

qθ = m , qW = 2m , qH = 0 and q16 = m . (2.25)

This symmetry automatically allows for the Giudice–Masiero term and the universal
anomaly coefficients AR

i = m ≠ 0 indicate a discrete GS mechanism. The simplest
case m = 1 is the R

4 symmetry discussed in [19, 20]. All other cases are just trivial
extensions as long as one considers the MSSM states only. Of course, if additional states
are introduced, they can have R

4m charges in such a way that one cannot reduce it to
R
4 . Another version of the uniqueness proof of R

4 can be found in [8]. However, the
analysis in [8] assumed that qθ = 1. Here we show that uniqueness also survives the
generalization to general qθ ≠ 1.

(ii) If we do not require the Weinberg neutrino mass operator but a Giudice–Masiero–
like mechanism, i.e. 2qH = 0 mod M , there are two cases: both cases have M = 4m,
m ∈ , qθ = m and qW = 2m. In addition, in the first case we get qH = 0 as discussed
above in case (i), and in the second one we find qH = M/2 = 2m and q16 = 2ℓm with
ℓ ∈ . However, this choice forbids the Weinberg neutrino mass operator.

2.5 Non–perturbative holomorphic µ term

If the above discrete R symmetry appears anomalous, i.e. if anomaly freedom is due
to a GS mechanism (see appendix B for a discussion of its discrete variant), then such
holomorphic contributions will appear as arising at the non–perturbative level [8, 20].
To see this, recall that the superfield S containing the axion a, i.e. S|θ=0 = s+i a, needs
to enter the gauge–kinetic function, or, in other words, L ⊃

∫
d2θ fS S WαW α (with

some coefficient fS). Non–invariant terms in the superpotential can be made invariant
by multiplying them by e−b S with appropriate b. As s controls 1/g2 such terms go
like e−b′/g2 , i.e. have the form of instanton contributions. This then fits nicely into the
scheme of dynamical supersymmetry breaking [21] (see also the more recent discussion
on “retrofitting” [22]), where the scale for supersymmetry breaking is set by a gaugino
condensate [23], or a more complicated dynamical term (see e.g. [24] for a review of
simple models).

2.6 Small Dirac neutrino Yukawa couplings

By relating them to supersymmetry breaking one may explain suppressed neutrino Dirac
Yukawa couplings [25–27]. That is, similarly to the µ term, one can get effective Dirac
neutrino Yukawa couplings from the Kähler potential terms

K ⊃ kLHuν̄
X†

M2
P

LHu ν̄ + h.c. (2.26a)

as well as

K ⊃ kH†
dLν̄

1

MP
H†

d L ν̄ + h.c. . (2.26b)
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Here, in an obvious notation, ν̄ denotes the right–handed neutrino superfield(s), kLHuν̄

and kH†
dLν̄

are dimensionless coefficients, and we suppress flavor indices. The first

term (2.26a) leads to Dirac neutrino masses when X attains its F–term VEV, ⟨FX⟩ ∼
m3/2 MP, while in the case of (2.26b) one has to observe that, due to the presence of the
‘non–perturbative’ µ term, also Hd attains an F term VEV, ⟨FHd

⟩ ∼ µ ⟨Hu⟩ ∼ m3/2 vEW.
As qHu +qHd

= 0 mod M , both terms are allowed if qν̄+qHu +qL = 0 mod M , which is
precisely the condition that an effective holomorphic Yν term is allowed. Altogether we
find, analogous to what we have discussed around (2.2), that effective neutrino Yukawa
couplings

Yν ∼
m3/2

MP
∼

µ

MP
(2.27)

will arise. For m3/2 in the multi–TeV range this can lead to realistic Dirac neutrino
masses. If we are to connect the suppression of Yν to the smallness of the µ term, it
is natural to assume that the neutrino Yukawa coupling is forbidden by the same R
symmetry that also forbids µ. As discussed above, LHu ν̄ has to have R charge 0.
Moreover, there will also be holomorphic contributions to the Yukawa coupling. That
is, even if both kLHuν̄ and kH†

dLν̄
vanish, Dirac Yukawa couplings of the order m3/2/MP

will get induced, where, as in our discussion of the µ term, m3/2 represents the order
parameter for R symmetry breaking.

2.7 Discussion

We have surveyed anomaly–free symmetries which forbid the µ term and are consistent
with the Giudice–Masiero mechanism and SU(5). We find that these are discrete R
symmetries R

M with M = 4m, m ∈ . The R charges of the Hu Hd are such that
one expects a holomorphic contribution to the µ term of similar size. That is, the
Giudice–Masiero mechanism strongly suggests the presence of additional holomorphic
contributions to the effective µ term!

Assuming further that the symmetries allow the up- and down–type Yukawa coup-
lings and commute with flavor we find that they automatically forbid the troublesome
dimension five proton decay operators and in many cases those of dimension four. In-
terestingly, all these symmetries require a GS axion for anomaly cancellation. That is,
these symmetries appear to be broken at the non–perturbative level. In other words,
imposing compatibility with the Giudice–Masiero mechanism leads us to a situation in
which a holomorphic µ term appears at the non–perturbative level, i.e. in a way the
Giudice–Masiero term is unnecessary.

3 Classification and models

In this section, we explore anomaly–free discrete symmetries that solve some of the most
severe problems of the MSSM. We will demand that the symmetry

1. is flavor–universal and Abelian, i.e. a R
M symmetry;

9

<X>: SUSY breaking VEV

Giudice, Masiero (1988)



Neutrino Mass and the μ Term

• Requiring Symmetries 


• to forbid mu term


• be anomaly-free


• be consistent with SU(5)


• continuous R symmetries not available


• Search Abelian discrete R symmetries,       , that satisfy


• Majorana neutrino case for qθ = integer:


• anomaly freedom (allowing Green-Schwarz)


• mu term forbidden perturbatively


• consistent with SU(5)


• usual Yukawa allowed


• Weinberg operators allowed
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M.-C. C., M. Ratz, Ch. Staudt, P. K. Vaudrevange (2012)

H.M. Lee, S. Raby M. Ratz, G.G. Ross, R. Schieren, 
K. Schmidt-Hoberg, P.K. Vaudrevange, (2011); 

R Symmetries

Discrete R Symmetries
A.H. Chamseddine, H.K. Dreiner (1996)

- five viable symmetries found;  
- one unique solution consistent       
   with SO(10) ➜ Z4 R-symmetry

K.S. Babu, I. Gogoladze, K. Wang (2002)



Dirac Neutrino Mass and the μ Term

• Search Abelian discrete R symmetries,       , that satisfy


• Dirac neutrino case for qθ = integer:


• anomaly freedom (a la Green-Schwarz)

• forbidding mu term perturbatively


• consistent with SU(5)


• allowing usual Yukawa


• Weinberg operators forbidden perturbatively


• an example:            symmetry


‣ at non-perturbative level


‣∆ L = 2 operators forbidden ⇒ no neutrinoless double beta decay


‣∆L = 4 operators allowed ⇒ new LNV processes
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classes of models found

such that 5qHu = 0 mod M . This means that qHu = 0 mod M unless the order is a
multiple of 5. In the latter case we can write the R

M symmetry as 5 × R
M/5 where the

5 factor is a non–R symmetry. Hence we can focus on qHu = 0 mod M , which implies,
by (2.3d), that qHd

= 0 mod M . Then Equations (3.1) and (3.2) imply

q10 = q5 = qθ mod M . (3.4)

That is, the symmetry commutes with SO(10) in the matter sector. We already know
from our discussion in Section 2.4 that the only meaningful R symmetry with this
property is R

4 .
We also scanned the discrete R

M symmetries up to order 200 with general qθ without
assuming a Giudice–Masiero–like mechanism. We obtain, apart from the symmetries
of Tables 2.1 and 2.2 of [8], only a few new symmetries. However, as we show in the
following in an example, these additional symmetries are redundant: consider a R

20

symmetry with (q10, q5, qHu , qHd
, qθ) = (1, 17, 8, 52, 5). This is equivalent to a R

4 × 5

symmetry with charge assignment ((1, 3), (1, 1), (0, 4), (0, 1), (1, 0)). The 5 is nothing
but the non–trivial center of SU(5), i.e. it does not forbid any couplings (see the dis-
cussion in [16, 31]) and the (non–trivial) R

4 factor is the one just discussed in the last
paragraph.

3.2 Models with Dirac neutrinos

By modifying the above conditions, i.e. by demanding that the symmetry

5. forbids the Weinberg neutrino mass operator perturbatively

and

6. is compatible with the Giudice–Masiero mechanism

we obtain further interesting discrete R symmetries. Some sample symmetries are listed
in Table 1. These symmetries are inequivalent. One way of verifying this is to check
whether or not two given charge assignments are equivalent by computing their Hilbert
superpotential basis [32]. Only if the bases coincide, the assignments are equivalent. In
the case of R symmetries, the Hilbert superpotential basis comprises homogeneous and
inhomogeneous elements, or monomials. Every possible superpotential term contains
precisely one inhomogeneous monomial and an arbitrary number of homogeneous mono-
mials. In appendix C we list the Hilbert superpotential basis for examples with the R

12

symmetries.

3.2.1 Comments on the R

8
symmetry

One of simplest charge assignments appears to be the one of the R
8 symmetry. Clearly

the usual Yukawa couplings 10 10Hu and 10 5Hd are allowed. Further, the Higgs
bilinear HuHd has R charge 0 mod 8. If we assign the right–handed neutrino ν̄ R

11

(a) R
M symmetries.

M q10 q5 qHu qHd
qθ ρ qν̄

4 0 0 2 2 1 1 2
4 2 2 2 2 1 1 0
8 1 5 2 6 2 2 1
12 1 9 4 8 3 3 11
12 2 6 2 10 3 3 4
12 4 0 10 2 3 3 2
16 1 13 6 10 4 4 13
24 1 21 10 14 6 6 17
28 1 25 12 16 7 7 19
28 2 22 10 18 7 7 24
28 4 16 6 22 7 7 6
32 1 29 14 18 8 8 21
36 1 33 16 20 9 9 23
36 2 30 14 22 9 9 28
36 4 24 10 26 9 9 2

(b) Residual symmetries.

M ′ q10 q5 qHu qHd
qν̄

2 0 0 0 0 0
2 0 0 0 0 0
4 1 1 2 2 1
6 1 3 4 2 5
3 1 0 1 2 2
3 2 0 2 1 1
8 1 5 6 2 5
12 1 9 10 2 5
14 1 11 12 2 5
7 1 4 5 2 5
7 2 1 3 4 3
16 1 13 14 2 5
18 1 15 16 2 5
9 1 6 7 2 5
9 2 3 5 4 1

Table 1: Classification of anomaly–free discrete R symmetries that forbid neutrino
masses perturbatively. We restrict to orders ≤ 36. (a) shows some sample symmetries.
The equality between qθ and ρ is due to Equation (2.23). The charge of the right–handed
neutrino superfield ν̄ is determined by the requirement that qν̄ + qHu + qL = 0 mod M
(cf. the discussion below (2.26)). In (b) we display the residual symmetries that remain
after the (‘hidden sector’) superpotential acquires its VEV.

charge 1, the Dirac neutrino Yukawa coupling will also be induced by R breaking. That
is, we will have an effective superpotential which is schematically of the form

Weff ∼ m3/2 HuHd +
m3/2

MP
LHu ν̄ +

m3/2

M2
P

QQQL . (3.5)

Here we suppress flavor indices. Once the superpotential of the hidden sector acquires a
VEV, the R

8 is spontaneously broken down to a 4 symmetry under which all matter
fields have charge 1 and the Higgs fields have charge 2 (Table 1 (b)). Of course, this
symmetry gets broken down to the usual matter (or ‘R’) parity once the Higgs scalars
attain their VEVs.

The Hilbert superpotential basis [32] for this model (setting all quarks to zero) is
given by the inhomogeneous monomials

ν̄4 ;
(
LLE

)
ν̄ ;

(
LHdE

)
;
(
LLE

)4
;
(
LLE

)2
(LHu)

2 ; (LHu)
4 , (3.6)
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Dirac Neutrinos and SUSY Breaking

• Symmetry realization in MSSM: discrete R symmetries,       


‣Dirac neutrinos, with naturally small masses

‣∆ L = 2 operators forbidden to all orders ⇒ no neutrinoless double beta decay


‣New signature: lepton number violation ∆L = 4 operators, (νR)4, allowed ⇒ 
new LNV processes, e.g. 
• neutrinoless quadruple beta decay


• mu term is naturally small

• dangerous proton decay operators forbidden/suppressed 

• can also give dynamical generation of RPV operators with size predicted


�16

M.-C. C., M. Ratz, C. Staudt, P. Vaudrevange (2012)

Heeck, Rodejohann (2013)

2

Mαβ ≡ |⟨H⟩| yαβ upon electroweak symmetry breaking.
A bi-unitary transformation can be used to diagonalize
this mass matrix via U †M V = diag(m1,m2,m3), where
U is the lepton mixing matrix relevant for electroweak
charged-current interactions. Contrary to other models
with Dirac neutrinos, the right-handed transformation
matrix V does not drop out, but can be absorbed by the
complex symmetric Yukawa coupling matrix καβ = κβα,
which is non-diagonal in general.
The scalar potential of our model is of the simple form

V (H,φ,χ) ≡
∑

X=H,φ,χ

(

µ2
X |X |2 + λX |X |4

)

+ λHφ|H |2|φ|2 + λHχ|H |2|χ|2 + λχφ|χ|2|φ|2

−
(

µφχ2 + h.c.
)

.

(3)

Here, the coefficients µj and λj have mass dimension one
and zero, respectively. Assuming µ2

H , µ2
φ < 0 < µ2

χ and
appropriate signs and magnitudes of the λj , we can easily
construct a potential that is bounded from below and
breaks SU(2)L × U(1)Y × U(1)B−L to U(1)EM × ZL

4 . In
order to forbid Majorana neutrinos, it is imperative that
χ does not acquire a vacuum expectation value; without
the last line in Eq. (3), the necessary condition for this
would be

m2
c ≡ µ2

χ + λHχ⟨H⟩2 + λχφ⟨φ⟩2 > 0 , (4)

but the µ term modifies this condition. To see how, let us
first note that we can chose µ and ⟨φ⟩ real and positive
w.l.o.g. using phase and B − L gauge transformations.
The µ term will then induce a mass splitting between
the properly normalized real (pseudo)scalar fields Re (χ)
and Im (χ)

m2
Re (χ) = m2

c − 2µ⟨φ⟩ , m2
Im (χ) = m2

c + 2µ⟨φ⟩ , (5)

so the condition ⟨χ⟩ = 0 becomes equivalent to m2
Re (χ) >

0, which can be easily satisfied.
Neutrinos are hence Dirac particles, but we also obtain

effective ∆L = 4 four-neutrino operators by integrating
out χ at energies E ≪ mRe (χ), mIm (χ):

L∆L=4
eff ⊃

1

2

(

m−2
Im (χ) −m−2

Re (χ)

)

(

καβνR,αν
c
R,β

)2
+ h.c.,

(6)

see Fig. 1 for the relevant Feynman diagrams. For sim-
plicity, we will assume physics at the TeV scale as the
source of our four-neutrino operators throughout this pa-
per; a discussion of more constrained light mediators, as
well as of other and more complicated models that gen-
erate effective four-neutrino operators with left-handed
neutrinos, will be presented elsewhere. We note that our
particular example uses a gauged B − L framework; in
general however, the observation and the model building
possibilities that might lead to lepton number violating
Dirac neutrinos are much broader.

CANDIDATES FOR 0ν4β

Our model from the last section gave us the effec-
tive dimension-six ∆L = 4 operator (νRνcR)

2, which can

+

νcR νR

νcR νR

χ χ

⟨φ⟩

⟨φ⟩
χ

χ

Figure 1: Tree-level realization of the ∆L = 4 operator
(νc

RνR)
2 describing the scattering νc

Rν
c
R → νRνR.

lead to an interesting signature in beta decay measure-
ments: four nucleons undergo beta decay, emitting four
neutrinos; these four meet at the effective ∆L = 4 ver-
tex and remain virtual. We only see four electrons go-
ing out, so at parton level we have 4d → 4u + 4e−,
and on hadron level 4n → 4p + 4e− (Fig. 2). Obvi-
ously this neutrinoless quadruple beta decay (0ν4β) is
highly unlikely—more so than 0ν2β, as it is of fourth
order—but one can still perform the exercise of identi-
fying candidate isotopes for the decay and estimating
the lifetime; constraining the lifetime experimentally is
of course also possible. Besides 0ν4β, one can imagine
analogous processes such as neutrinoless quadruple elec-
tron capture (0ν4EC), neutrinoless quadruple positron
decay (0ν4β+), neutrinoless double electron capture dou-
ble positron decay (0ν2EC2β+), etc. We will find po-
tential candidates for 0ν4β, 0ν2EC2β+, 0ν3ECβ+, and
0ν4EC.

We will now identify those candidate isotopes for∆L =
4 processes. We need to find isotopes which are more sta-
ble after the flip (A,Z) → (A,Z±4). Normal beta decay
has to be forbidden in order to handle backgrounds and
make the mother nucleus sufficiently stable. Using nu-
clear data charts [7], we found seven possible candidates:
three for 0ν4β, four for neutrinoless quadruple electron
capture and related decays. They are listed in Tab. I,
together with their Q-values, competing decay channels,
and natural abundance. It should be obvious that not
all 0ν2β candidates (A,Z) make good 0ν4β candidates,
as (A,Z + 4) can have a larger mass than (A,Z); it is
less obvious that there exist no 0ν4β candidates with
beta-unstable daughter nuclei. Using the semi-empirical
Bethe–Weizsäcker mass formula, one can however show

ν

ν

ν

ν

W−

W−

e−

e−
e−

e−

d u

d u

u

ud

d

Figure 2: Neutrinoless quadruple beta decay 4d → 4u + 4e−

via a ∆L = 4 operator (νcν)2 (filled circle). Arrows denote
flow of lepton number, colors are for illustration purposes.

M.-C. C., M. Ratz, C. Staudt, P. Vaudrevange (2012)

M.-C. C., M. Ratz, V. Takhistov (2015)
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Anarchy

• there are no parametrically small numbers

• large mixing angle, near mass degeneracy statistically preferred


• UV theory prediction can resemble anarchy

• warped extra dimensions

• heterotic string theory

4

(parabolic [blue] region). We refer to this region of the parameter space as the prediction of the ‘ordered hypothesis.’
The figure also depicts the experimentally allowed values of sin2 θ23, sin

2 θ13 at the one and three sigma levels, and
the region of the parameter space preferred by anarchy at the one and two sigma levels, as in Fig. 2(top-right).
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FIG. 3: Prediction of the ordered hypothesis in the sin2 θ23 × sin2 θ13 plane ([blue] parabolic contours), dictated by Eq. (10)
for C ∈ [0.8, 1.2]. The light [yellow] curve corresponds to C = 1. The currently allowed region of the parameter space and the
expectations from the anarchy hypothesis, both in Fig. 2(top-right), are also depicted.

Fig. 3 reveals that the ordered hypothesis and the anarchy one prefer somewhat different regions of the currently
allowed sin2 θ23 × sin2 θ13 parameter space. The anarchy hypothesis does not strongly prefer any region of the
experimentally available space. It does, however, favor maximal sin2 θ23 = 1/2 and “large” values of sin2 θ13. On
the other hand, the ordered hypothesis, in light of the Day Bay result, rules out sin2 θ23 = 1/2, instead preferring
cos 2θ23 ∼ ±0.1 (this point was recently also emphasized in [15]). It is also curious to note that C ! 0.5 values are
disfavored.
Precision measurements of the neutrino oscillation parameters may ultimately favor anarchy versus order, or vice-

versa. The values of the parameters are such that an improved determination of sin2 θ23 will provide the most
discriminating power. If one interprets the width of the blue region in Fig. 3 as indicative of the uncertainty in the
ordered predictions, next-generation experiments sensitive to δ(sin2 θ23) ∼ 0.02 – an uncertainty of a few percent –
would be required to qualitatively change our understanding of structure in lepton mixing. The NOνA experiment,
for example, is aiming at measuring, from νµ disappearance, sin2 2θ23 at the 0.4% level for sin2 2θ23 = 1 [16], which
translates into an uncertainty of 0.03 for sin2 θ23 = 0.5. Similar, albeit slightly worse, precision is expected from T2K
[17]. The fact that θ13 is large implies that νµ → νe searches at T2K and NOνA, combined with reactor measurements
of ν̄e disappearance, will allow one to directly measure sin2 θ23. The precision with which sin2 θ23 can be measured
will be dominated by the precision with which T2K and NOνA can measure sin2 θ23 sin

2 2θ13,[23] which is expected
to be markedly worse than the one advertised for sin2 θ23 from νµ disappearance, above. Interesting information is
also expected from precision measurements of the atmospheric neutrinos at, for example, the INO experiment (see,
for example, [18, 19], and references therein).
Similar arguments can be made in the sin2 θ12 × sin2 θ13 and sin2 θ12 × sin2 θ23 planes. The circumstances here,

however, are different. sin2 θ12 is already known at the few percent level. This implies that constraints on successful
ordered scenarios are either very stringent and the associated “predictions” are very tight (e.g., sin2 θ12 may almost
uniquely determine the value of sin2 θ13 and sin2 θ23) or correlations are either absent or very weak. In the sin2 θ12 ×
sin2 θ23 plane, the anarchical prediction works almost “too well,” as the currently three-sigma experimentally allowed
region is entirely contained deep in the one-sigma anarchy hypothesis prediction. It is quite unlikely that an ordered
hypothesis will lead to a significantly better, statistically speaking, a posteriori agreement with the data.
The next obvious target for neutrino oscillation experiments is the discovery of leptonic CP-invariance violation,

whose magnitude is governed by the Dirac phase δ. For example, for neutrinos propagating in vacuum, P (νµ →
νe) − P (ν̄µ → ν̄e) ∝ sin δ. Since the Haar measure Eq. (3) is flat in δ, the probability distribution of sin δ is peaked
at sin δ = ±1 [2]: the anarchy hypothesis implies that “large” leptonic CP-invariance violation is quite probable.
If the neutrinos are Majorana fermions, the Majorana phases χ1,2 in Eq. (1) are physical observables. Similar

to that of δ, their probability distributions are flat in χ1,2, respectively. Majorana phases are known to affect the
magnitude of the neutrino exchange contribution to neutrinoless double-beta decay (0νββ), and it is interesting to ask
whether the anarchy hypothesis has any impact on the expected rates for these rare nuclear processes. The answer,
unfortunately, depends on the value of the lightest neutrino mass, which is both experimentally unknown and not
addressed by the anarchy hypothesis, which concerns only mixing parameters. Nonetheless, we would like to advertise
that, if the anarchy hypothesis is correct and neutrinos are Majorana fermions, it is quite unlikely that the rate for

Hall, Murayama, Weiner (2000); 

de Gouvea, Murayama (2003)

 de Gouvea, Murayama (2012)
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Expectations from Heterotic String Theories

• heterotic string models: O(100) RH neutrinos


• statistical expectations with large N  ( = # of RH neutrinos)

�19

Dirac versus Majorana

• efforts 
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Neutrinos & Strings An explicit example

See–saw couplings

Heterotic see–saw
Buchmüller et al. (2007b) ; Buchmüller et al. (2007a) ; Lebedev et al. (2007) ; Kappl et al. (2011)

☞ there are O(100) neutrinos (= R parity odd SM singlets)

➥ O(100) contributions to the (effective) neutrino mass operator

➥ effective suppression of the see–saw scale

mν ∼
v2

M∗
M∗ ∼

MGUT

10...100

. . . seems consistent with observation(√
∆m2

atm ≃ 0.04 eV &
√
∆m2

sol ≃ 0.008 eV
)

Talk by Michael Ratz at BeNE 2012

Buchmüller, Hamaguchi, Lebedev, 
Ramos-Sánchez, Ratz (2007)

Neutrinos & Strings An explicit example

See–saw couplings

Heterotic see–saw
Buchmüller et al. (2007b) ; Buchmüller et al. (2007a) ; Lebedev et al. (2007) ; Kappl et al. (2011)

☞ there are O(100) neutrinos (= R parity odd SM singlets)

➥ O(100) contributions to the (effective) neutrino mass operator

ℓ

φ

φ

ℓ

mν =

∑

 ν ℓ

φ

φ

ℓ

ν̄

+
ℓ

φ

φ

ℓ

ν̄

near maximal mixing angle and one large mixing angle. Because maximal mixing, with

sin2(2✓) = 1, is a special point, we look for cases which have at least as much mixing

as the 1� experimental bounds, requiring that one angle satisfies sin2(2✓) � 0.98 and

another satisfies sin2(2✓) � 0.84. The results are shown in Figure 2, from which we see

a clear indication that as the number of right-handed neutrinos increases, so too does

the likelihood of obtaining large mixing angles – as expected for the reasons laid out in

Section 2.This e↵ect is further illustrated in Figure 3, where we see the shift to larger

mixing angles as N increases.
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Figure 3: Distribution of mixing angles. The three di↵erent bands represent the largest,
middle, and smallest sin2(2✓).

Other parameters

While the absolute masses of the neutrinos are not well measured, oscillation experiments

give us a good measure of their mass squared di↵erences, with a best fit of �m
2
21 =

7.59+0.20
�0.18⇥10�5 eV2 and �m

2
31 = 2.50+0.09

�0.16⇥10�3 eV2 (assuming a normal hierarchy, with

comparable values for an inverted hierarchy) [17]. To see if our construction accommodates

this small but non-trivial hierarchy, and to determine whether there is a preference for a

normal or inverted structure, in Figure 4 we consider the ratio of neutrino mass squared

di↵erences, which we plot as log10 �m
2
32/�m

2
21. Here we label the masses such that

13

m3 > m2 > m1, so that this quantity is positive for a normal hierarchy and negative

for an inverted one.9 Observed masses give a value of about ±1.5. We see that for

large N , the masses are much less hierarchical, and easily accommodate the observed

values. Furthermore, we see an overwhelming preference for the normal hierarchy, which

in particular justifies our use of the associated mass and mixing angle measurements in

later parts of this section.10
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Figure 4: Ratio of mass squared di↵erences log10 �m
2
32/�m

2
21 for N = 3, 10, 30 and

100. Here we choose the convention m3 > m2 > m1, so that positive(negative) values
correspond to a normal (inverted) hierarchy.

Having seen that the mixing angles and mass splittings observed in nature are in-

creasingly typical as N increases, we wish to look at other properties of viable matrices

produced within our framework. To select cases close to reality, we consider only matrices

which satisfy: 0.28  sin2(✓12)  0.35; 0.41  sin2(✓23)  0.61; 29.1  �m
2
31/�m

2
21 

35.6; and 0.004  sin2(✓13)  0.028, which come from best fit 2� bounds [17]. In Figure

5, we show the distribution of sin(✓13), subject to the large angle and mass constraints,

and find that there is some tension with the best fit, which at 2� corresponds to about

9
Note that for an inverted hierarchy, our labeling is non-standard.

10
The reason our scenario strongly prefers a normal versus an inverted hierarchy is that the reasonably

large observed ratio of solar and atmospheric mass squared di↵erences necessitates that either the heaviest

(normal hierarchy) or the lightest (inverted hierarchy) of the neutrinos is a mild outlier. Having the

heaviest neutrino as the outlier in our scenario is much more probable, since this requires fewer outlying

elements in our typically degenerate mass matrix.

14

Feldstein, Klemm (2012)

preference for large 
mixing angles

preference for 
normal hierarchy
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Symmetry Relations
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Grand Unified Theories: GUT symmetry

Family Symmetry:

Quarks ⬌ Leptons

e-family ⬌ muon-family ⬌ tau-family



Mass Spectrum of Elementary Particles
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Symmetry Relations
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Symmetry ⇒ relations among parameters 
⇒ reduction in number of fundamental 

parameters



Symmetry Relations
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Symmetry ⇒ relations among parameters 
⇒ reduction in number of fundamental 

parameters

Symmetry ⇒ experimentally testable 
correlations among physical observables



Origin of Flavor Mixing and Mass Hierarchies

• several models have been constructed based on 

•GUT Symmetry [SU(5), SO(10)] ⊕ Family 
Symmetry GF   


•models based on discrete family symmetry 
groups have been constructed 

•A4 (tetrahedron)

• T´ (double tetrahedron) 

•S3 (equilateral triangle)

•S4 (octahedron, cube)

•A5 (icosahedron, dodecahedron)

• ∆27 

•Q6 


•Extra dimensional origin

•Modular symmetry
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33

The Horizontal Symmetry

• Three families are the

same under vertical

symmetry; yet

different under

horizontal symmetry

• Zeros in the mass

matrices are protected

by a family symmetry

SU(2)F

uuu

ddd

eee

sss

ttt

bbb

!!!µµµ

"""µµµ

!!!"""

ccc

!!!eee

SU(2)F

SU(10)

GUT Symmetry
SU(5), SO(10), …

family symmetry 
(T′, SU(2), ...)



Example: Tetrahedral Group A4    

• Smallest group giving rise to tri-bimaximal neutrino mixing: tetrahedral group A4   

T: (1234) → (2314) S: (1234) →(4321)

�26



Tri-bimaximal Neutrino Mixing

• Latest Global Fit (3σ)


• Tri-bimaximal Mixing Pattern 


• Leading Order: TBM (from symmetry) + higher order corrections/contributions


• More importantly, corrections to the kinetic terms


• small for quarks


• sizable in discrete symmetry models for leptons

Harrison, Perkins, Scott (1999)

I. INTRODUCTION

The measurements of neutrino oscillation parameters have entered a precision era. The global

fit to current data from neutrino oscillation experiments give the following best fit values and 2⇧

limits for the mixing parameters [1],

sin
2 ⇤12 = 0.30 (0.25� 0.34), sin

2 ⇤23 = 0.5 (0.38� 0.64), sin
2 ⇤13 = 0 (< 0.028) . (1)

These values for the mixing parameters are very close to the values arising from the so-called

“tri-bimaximal” mixing (TBM) matrix [2],

UTBM =

�

⇧⇧⇧⇤

⌥
2/3 1/

⇧
3 0

�
⌥

1/6 1/
⇧

3 �1/
⇧

2

�
⌥

1/6 1/
⇧

3 1/
⇧

2

⇥

⌃⌃⌃⌅
, (2)

which predicts sin
2 ⇤atm, TBM = 1/2 and sin ⇤13,TBM = 0. In addition, it predicts sin

2 ⇤⇥,TBM = 1/3

for the solar mixing angle. Even though the predicted ⇤⇥,TBM is currently still allowed by the

experimental data at 2⇧, as it is very close to the upper bound at the 2⇧ limit, it may be ruled out

once more precise measurements are made in the upcoming experiments.

It has been pointed out that the tri-bimaximal mixing matrix can arise from a family symmetry

in the lepton sector based on A4 [3] , which is a group that describes the even permutations of

four objects and it has four in-equivalent representations, 1, 1
⇤
, 1

⇤⇤
and 3. However, due to its lack

of doublet representations, CKM matrix is an identity in most A4 models. In addition, to explain

the mass hierarchy among the charged fermions, one needs to resort to additional symmetry. It is

hence not easy to implement A4 as a family symmetry for both quarks and leptons [4].

In this letter, we consider a di⇥erent finite group, the double tetrahedral group,
(d)T , which is a

double covering of A4. (For a classification of all finite groups up to order 32 that can potentially

be a family symmetry, see [5]). Because it has the same four in-equivalent representations as in

A4, the tri-bimaximal mixing pattern can be reproduced. In addition,
(d)T has three in-equivalent

doublets, 2, 2
⇤
, and 2

⇤⇤
, which can be utilized to give the 2 + 1 representation assignments for the

quarks [6]. In the context of SU(2) flavor group, this assignment has been known to give realistic

quark mixing matrix and mass hierarchy [7]. Utilizing
(d)T as a family symmetry for both quarks

and leptons has been considered before in non-unified models [8, 9]. In Ref. [8], both quarks

and leptons (including the neutrinos) have 2 ⇤ 1 representation assignments under
(d)T , and the

prediction for the solar mixing angle is ⌅ 10
�3

, which is in the region of small mixing angle solution

that has been ruled out by SNO and KamLAND. A recent attempt in [9] generalizes the
(d)T to

2
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hence not easy to implement A4 as a family symmetry for both quarks and leptons [4].

In this letter, we consider a di⇥erent finite group, the double tetrahedral group,
(d)T , which is a

double covering of A4. (For a classification of all finite groups up to order 32 that can potentially

be a family symmetry, see [5]). Because it has the same four in-equivalent representations as in

A4, the tri-bimaximal mixing pattern can be reproduced. In addition,
(d)T has three in-equivalent

doublets, 2, 2
⇤
, and 2

⇤⇤
, which can be utilized to give the 2 + 1 representation assignments for the

quarks [6]. In the context of SU(2) flavor group, this assignment has been known to give realistic

quark mixing matrix and mass hierarchy [7]. Utilizing
(d)T as a family symmetry for both quarks

and leptons has been considered before in non-unified models [8, 9]. In Ref. [8], both quarks

and leptons (including the neutrinos) have 2 ⇤ 1 representation assignments under
(d)T , and the

prediction for the solar mixing angle is ⌅ 10
�3

, which is in the region of small mixing angle solution

that has been ruled out by SNO and KamLAND. A recent attempt in [9] generalizes the
(d)T to

2
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sin2 ✓23 = 0.437 (0.374� 0.626)

sin2 ✓12 = 0.308 (0.259� 0.359)

sin2 ✓13 = 0.0234 (0.0176� 0.0295)

1

[θlep23 ~ 49.7°]

[θlep12 ~ 33.8°]

[θlep13 ~ 8.61°]

Leurer, Nir, Seiberg (’93); 

Dudas, Pokorski, Savoy (’95)

M.-C.C, M. Fallbacher, M. Ratz, C. Staudt  (2012) 

Esteban, Gonzalez-Garcia, 
Hernandez-Cabezudo, Maltoni, 

Schwetz, 1811.05487



Neutrino Mass Matrix from A4

• always diagonalized by TBM matrix, independent of the two free parameters 
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under which the transformation properties of various fields are summarized in Table I, the above

Lagrangian is the most general one. Here the operators that couple to H5T3T3 are not shown in the

above Lagrangian as their contributions can be absorbed into a redefinition of the coupling constant

yt. In addition, we neglect the operator H5FT3�⌥⌥� in LTF since its contribution is negligible.

Also not shown are those that contribute to LFF which can be absorbed into a redefinition of the

parameter u and ⌃0. Note that in principle, viable phenomenology may still be obtained when

more operators are allowed, The additional discrete symmetry that is needed in that case would be

smaller. Nevertheless, more Yukawa coupling constants will be present and the model would not

be as predictive. The Z12 ⇥ Z �
12 symmetry also forbids proton and other nucleon decay operators

to very high orders; it is likely this symmetry might be linked to orbifold compactification in extra

dimensions. Note that, the Z12 ⇥ Z �
12 symmetry also separates the neutrino and charged fermion

sectors, so that the neutrinos only couple to the GTST2 breaking sector. Furthermore, it allows the

45-dim Higgs, �45, to appear only in the operator shown above, and thus is crucial for obtaining

the Georgi-Jarlskog (GJ) relations.

The interactions in L⇥ give the following neutrino mass matrix [3], which is invariant under

GTST2 [9],

M⇥ =
⇤v2

Mx

�

⇧⇧⇧⇤

2⌅0 + u �⌅0 �⌅0

�⌅0 2⌅0 u� ⌅0

�⌅0 u� ⌅0 2⌅0

⇥

⌃⌃⌃⌅
, (13)

and we have absorbed the Yukawa coupling constants by rescaling the VEV’s. This mass matrix

M⇥ is form diagonalizable, i.e. the orthogonal matrix that diagonzlizes it does not depend on the

eigenvalues. Its diagonal form is,

V T
⇥ M⇥V⇥ = diag(u + 3⌅0, u, �u + 3⌅0)

v2
u

Mx
, (14)

where the diagonalization matrix V⇥ is the tri-bimaximal mixing matrix, V⇥ = UTBM given in Eq. 2.

This tri-bimaximal mixing pattern and the mass eigenvalues in the neutrino sector are thus the

same as in all previous analyses in models based on A4 and (d)T , which has been shown to be

consistent with experimental data.

The down type quark and charged lepton masses are generated by LTF . Because the renormal-

izable operator H5FT3 is forbidden by the (d)T symmetry, the generation of b quark mass requires

the breaking of (d)T , which naturally explains the hierarchy between mt and mb. The b quark mass,

and thus the ⇧ mass, is generated upon the breaking of (d)T ⇤ GT and (d)T ⇤ GS. As mb and m⇤

are generated by the same operator, H5FT3⌃�, we obtain the successful b� ⇧ unification relation.

5

I. INTRODUCTION

The measurements of neutrino oscillation parameters have entered a precision era. The global

fit to current data from neutrino oscillation experiments give the following best fit values and 2⇥

limits for the mixing parameters [1],

sin2 �12 = 0.30 (0.25� 0.34), sin2 �23 = 0.5 (0.38� 0.64), sin2 �13 = 0 (< 0.028) . (1)

These values for the mixing parameters are very close to the values arising from the so-called

“tri-bimaximal” mixing (TBM) matrix [2],

UTBM =

�

⇧⇧⇧⇤

⌥
2/3 1/

⌅
3 0

�
⌥

1/6 1/
⌅

3 �1/
⌅

2

�
⌥

1/6 1/
⌅

3 1/
⌅

2

⇥

⌃⌃⌃⌅
, (2)

which predicts sin2 �atm, TBM = 1/2 and sin �13,TBM = 0. In addition, it predicts sin2 �⇥,TBM = 1/3

for the solar mixing angle. Even though the predicted �⇥,TBM is currently still allowed by the

experimental data at 2⇥, as it is very close to the upper bound at the 2⇥ limit, it may be ruled out

once more precise measurements are made in the upcoming experiments.

It has been pointed out that the tri-bimaximal mixing matrix can arise from a family symmetry

in the lepton sector based on A4 [3] , which is a group that describes the even permutations of

four objects and it has four in-equivalent representations, 1, 1⇤, 1⇤⇤ and 3. However, due to its lack

of doublet representations, CKM matrix is an identity in most A4 models. In addition, to explain

the mass hierarchy among the charged fermions, one needs to resort to additional symmetry. It is

hence not easy to implement A4 as a family symmetry for both quarks and leptons [4].

In this letter, we consider a di�erent finite group, the double tetrahedral group, (d)T , which is a

double covering of A4. (For a classification of all finite groups up to order 32 that can potentially

be a family symmetry, see [5]). Because it has the same four in-equivalent representations as in

A4, the tri-bimaximal mixing pattern can be reproduced. In addition, (d)T has three in-equivalent

doublets, 2, 2⇤, and 2⇤⇤, which can be utilized to give the 2 + 1 representation assignments for the

quarks [6]. In the context of SU(2) flavor group, this assignment has been known to give realistic

quark mixing matrix and mass hierarchy [7]. Utilizing (d)T as a family symmetry for both quarks

and leptons has been considered before in non-unified models [8, 9]. In Ref. [8], both quarks

and leptons (including the neutrinos) have 2 ⇥ 1 representation assignments under (d)T , and the

prediction for the solar mixing angle is ⇤ 10�3, which is in the region of small mixing angle solution

that has been ruled out by SNO and KamLAND. A recent attempt in [9] generalizes the (d)T to

2

relative strengths  
⇒  CG’s

Ma, Rajasekaran (2001); Babu, Ma, Valle (2003); 
Altarelli, Feruglio (2005)

2 free parameters



General Structure
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Flavor Model Structure: A4 Example

• interplay between the symmetry breaking patterns 
in two sectors lead to lepton mixing (BM, TBM, ...)

• symmetry breaking achieved through flavon VEVs

• each sector preserves different residual symmetry

• full Lagrangian does not have these residual 
symmetries

• general approach: include high order terms in 
holomorphic superpotential

• possible to construct models where higher order 
holomorphic superpotential terms vanish to ALL 
orders

• quantum correction?
⇒ uncertainty in predictions due to                                     

     Kähler corrections

13

GF

Ge Gν

charged lepton 
sector
e.g. Z3 

subgroup of A4

neutrino
 sector
e.g. Z2 

subgroup of A4

�Φe� �Φν�

� Φe�∝ (1,0,0) � Φν�∝ (1,1,1)

e.g. A4

Leurer, Nir, Seiberg (1993); Dudas, 
Pokorski, Savoy (1995); Dreiner, 
Thomeier (2003);  

Mu-Chun Chen, UC Irvine                                                         Theory of Lepton Flavour                                                                           Blois 2014



Example: SU(5) Compatibility ⇒ T′ Family Symmetry 

• Double Tetrahedral Group T´: double covering of A4

• Symmetries ⇒ 10 parameters in Yukawa sector  ⇒ 22 physical observables


• Symmetries ⇒ correlations among quark and lepton mixing parameters 
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angle, the corresponding mixing angle in the charged lepton sector, ⌅e
12, is much suppressed due to

the GJ relations,

⌅e
12 ⌅

⌥
me

mµ
⌅ 1

3

⌥
md

ms
⇤ 1

3
⌅c . (18)

As a result, the correction to the tri-bimaximal mixing pattern due to the mixing in the charged

lepton sector is small, and is given, to the leading order, by,

tan2 ⌅� ⌅ tan2 ⌅�,TBM � ei�⌅c/3 , (19)

where the relative phase � is determined by the strengths and phases of the VEV’s, ⇧0 and ⌃⇥
0.

With ⌅c ⌅ 0.22 and (⇧0⌃⇥
0) being real, the factor ei� turns out to be very close to 1. This

deviation thus naturally accounts for the di�erence between the prediction of the TBM matrix,

which gives tan2 ⌅�,TBM = 1/2, and the experimental best fit value, tan2 ⌅�,exp = 0.429. The

o� diagonal matrix element in Me also generates a non-zero value for the neutrino mixing angle

⌅13 ⌅ ⌅c/3
⇧

2 ⇤ 0.05. We note that a more precise measurement of tan ⌅� will pin down the

phase of ⇧0⌃⇥
0, and thus the three leptonic CP phases, which may yield interesting consequences

on leptogenesis [10] and lepton flavor violating processes [11].

III. NUMERICAL RESULTS

The observed quark masses respect the following relation,

mu : mc : mt = ⇥2u : ⇥u : 1, md : ms : mb = ⇥2d : ⇥d : 1 , (20)

where ⇥u ⌅ (1/200) = 0.005 and ⇥d ⌅ (1/20) = 0.05.

In our model, the mass matrices for the down type quarks and charged leptons can be

parametrized as,

Md

ybvd⇧0⇤0
=

�

⇧⇧⇧⇤

0 (1 + i)b 0

�(1� i)b c 0

b b 1

⇥

⌃⌃⌃⌅
,

Me

ybvd⇧0⇤0
=

�

⇧⇧⇧⇤

0 �(1� i)b b

(1 + i)b �3c b

0 0 1

⇥

⌃⌃⌃⌅
,

(21)

and with the choice of b ⇥ ⇧0⌃⇥
0/⇤0 = 0.00789 and c ⇥ ⌃0N0/⇤0 = 0.0474, the mass ratios for the

down type quarks and for the charged leptons are given by,

md : ms : mb = 0.00250 : 0.0499 : 1.00 , (22)

me : mµ : m⇤ = 0.000870 : 0.143 : 1.00 . (23)

8

CG’s of 

SU(5) & T´

The values in Eq. 46 correspond to the following parameters in the standard
parametrization (PDG),

s12 ⌅ ⌥ = 0.227, s23 ⌅ A⌥2 = 0.0411, s13 = 0.00412, c12 = 0.974, c23 = c13 ⌃ 0 .
(49)

⇤

⇧
0.838 0.542 0.0583e�i227o

�0.385� 0.0345ei227o

0.594� 0.0224ei227o

0.705
0.384� 0.0346ei227o �0.592� 0.0224ei227o

0.707

⌅

⌃ (50)

⇧ |UMNS | =

⇤

⇧
0.838 0.542 0.0583
0.362 0.610 0.705
0.408 0.577 0.707

⌅

⌃ (51)

J� = �0.00967 (52)

Charged lepton diagonalization matrix:
⇤

⇧
0.997ei177o

0.0823ei131o

1.31⇤ 10�5e�i45o

0.0823ei41.8o

0.997ei176o

0.000149e�i3.58o

1.14⇤ 10�6 0.000149 1

⌅

⌃ (53)

sin2 2⌃atm = 1, tan2 ⌃⇤ = 0.419, |Ue3| = 0.0583 (54)

tan2 ⌃⇤ ⌃ tan2 ⌃⇤,TBM +
1
2
⌃c cos ⌅ (55)

4

M.-C.C, K.T. Mahanthappa (2007, 2009)

1/2
neutrino 

solar mixing quark Cabibbo 
mixing

leptonic 
CP phase

no free 
parameters!



Neutrinoless Double Beta Decay
Neutrinoless Double Beta Decay

• neutrino-less double beta decay
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[Plot taken from C. Giunti, LIONeutrino2012]

our model prediction          

M.-C. C., J. Huang, K.T. Mahanthappa,  A. Wijangco (2013)

Neutrinoless Double Beta Decay

• neutrino-less double beta decay

•

32

Predictions of 3ν-Mixing Paradigm
mββ = |Ue1|2 m1 + |Ue2|2 e iα2 m2 + |Ue3|2 e iα3 m3

mmin    [eV]

|m
ββ

|  
  [

eV
]

NS

IS

C
osm

ological Lim
it

Current Bound or Positive Indication

10−4 10−3 10−2 10−1 1
10−4

10−3

10−2

10−1

1

1σ
2σ
3σ

! Positive indication:
tension with cosmology

! Quasi-Degenerate:

|mββ | ≃ mν

√

1− s22ϑ12
s2α2

! Inverted Hierarchy:

|mββ | ≃
√

∆m2
A(1− s22ϑ12

s2α2
)

! Normal Hierarchy:

|mββ| ≃ |s212
√

∆m2
S + e iαs213

√

∆m2
A|

≃ |2.7 + 1.2e iα|× 10−3 eV

m1 " 10−3 eV⇒cancellation?

|mββ | # 10−2 eV =⇒ Normal Spectrum
C. Giunti − Neutrino Masses − LIONeutrino2012 − 24 Oct 2012 − 13/33

[Plot taken from C. Giunti, LIONeutrino2012]

our model prediction
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Neutrinoless Double Beta Decay

• neutrino-less double beta decay
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[Plot taken from C. Giunti, LIONeutrino2012]
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Neutrinoless Double Beta Decay

• neutrino-less double beta decay
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Predictions of 3ν-Mixing Paradigm
mββ = |Ue1|2 m1 + |Ue2|2 e iα2 m2 + |Ue3|2 e iα3 m3
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Predictions of 3ν-Mixing Paradigm
mββ = |Ue1|2 m1 + |Ue2|2 e iα2 m2 + |Ue3|2 e iα3 m3
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sum rule among masses 
⇒ small predicted region 
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Symmetry Relations 

• QLC-I


• QLC-II


• testing symmetry relations: a more robust way to distinguish different classes 

of models

mixing parameters best fit 3σ range

θq
23 2.36o 2.25o - 2.48o

θq
12 12.88o 12.75o - 13.01o

θq
13 0.21o 0.17o - 0.25o

mixing parameters best fit 3σ range

θe
23 41.2o 35.1o - 52.6o

θe
12 33.6o 30.6o - 36.8o

θe
13 8.9o 7.5o -10.2o 

Quark Mixing Lepton Mixing

θc + θsol ≅ 45o

tan2θsol ≅ tan2θsol,TBM + (θc / 2) * cos δe 

θq23 + θe23 ≅ 45o

Raidal, ‘04; Smirnov, Minakata, ‘04

Ferrandis, Pakvasa; Dutta, Mimura; 
M.-C.C., Mahanthappa 

θe13 ≅ θc / 3√2

(BM)

(TBM)
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measuring leptonic mixing parameters to the 
precision of those in quark sector

☜ slight inconsistent

☜ Too small



“Large” Deviations from TBM in A4 

• Different A4 breaking patterns:
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invertednormal

M.-C.C, J. Huang, J. O’Bryan, A. Wijangco, F.  Yu, (2012)

non-maximal θ23 ➩ normal hierarchydeviations 
correlated mass ordering ➩ symmetry breaking patterns



CP Violation



CP Violation in Nature
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Discrete Family Symmetries and Origin of CP Violation Introduction

CP violation in Nature

CP violation in Nature

+ CP so far only observed in flavor sector

Â it appears natural to seek connection between flavor physics & CP

+ flavor structure may be explained by (non–Abelian discrete) flavor
symmetries

this talk:

non–Abelian discrete (flavor) symmetry G$ CP



Origin of CP Violation

• CP violation ⇔ complex mass matrices


• Conventionally, CPV arises in two ways:


• Explicit CP violation: complex Yukawa coupling constants Y


• Spontaneous CP violation: complex scalar VEVs  <h>


• Complex CG coefficients in certain discrete groups ⇒ explicit CP violation  

• CPV in quark and lepton sectors purely from complex CG coefficients

3

which is parametrized by two parameters, giving the
three absolute neutrino masses [9] (see below). As these
interactions involve only the triplet representations of T ′,
the relevant product rule is 3 ⊗ 3. Consequently, all CG
coefficients are real, leading to a real neutrino Majo-
rana mass matrix. The neutrino mass matrix given in
Eq. 16 has the special property that it is form diagonal-
izable [14], i.e. independent of the values of ξ0 and u0, it
is diagonalized by the tri-bimaximal mixing matrix,

UT
TBM

MνUTBM = diag(u0 + 3ξ0, u0,−u0 + 3ξ0)
v2

u

MX
,

≡ diag(m1, m2, m3) . (17)

While the neutrino mass matrix is real, the complex
charged lepton mass matrix Me, which is diagonalized
by, V †

e,RMeVe,L = diag(me, mµ, mτ ), leads to a complex

VPMNS = V †
e,LUTBM (see below).

CPT Invariance and CP Violation.—Even though the
complexity of the Lagrangian arises in our model through
the complex CG coefficients, the hermiticity of the La-
grangian, which is required in order to have CPT invari-
ance, remains satisfied. This is easily seen using the com-
ponent form given in Eq. 11. Take the term URMuQL

for example. Its corresponding hermitian conjugate is

(URMuQL)† = (U †
Rγ0MuQL)† = QLM †

uUR . (18)

The hermiticity of the Lagrangian allows us to write, in
general,

L(x⃗, t) = αO(x⃗, t) + α∗
O

†(x⃗, t) , (19)

where O(x⃗, t) is some operator and α is some c-number.
Recall that, the charge conjugation C changes a left-
hande particle into a left-hande anti-particle, while the
parity P turns a left-handed particle into a right-handed
particle, and vice versa. Thus the CP transformation
converts a left-handed particle into a right-handed anti-
particle. Effectively,

O(x⃗, t)
CP−→ O

†(−x⃗, t) , α
CP−→ α , (20)

The time reversal operator is antiunitary. It reverses the
momentum of a particle and flips its spin. Effectively,

O(x⃗, t)
T−→ O(x⃗,−t) , α

T−→ α∗ , (21)

In the weak eigenstates, the interactions Lcc in Eq. 15 are
invariant under CP and T, as all coupling constants are
real. On the other hand, the Yukawa interactions violate
both CP and T. Using the up-quark sector again as an
example, for each conjugate pair specified by indices i
and j,

UR,i(Mu)ijQL,j + QL,j(M
†
u)jiUR,i

CP−→ QL,j(Mu)ijUR,i + UR,i(Mu)∗ijQL,j , (22)

UR,i(Mu)ijQL,j + QL,j(M
†
u)jiUR,i

T−→ UR,i(Mu)∗ijQL,j + QL,j(Mu)ijUR,i , (23)

The complexity of the mass matrix, giving rise to CP and
T violations, ensues from the complex CG coefficients in
T ′. Here we have suppressed the space-time coordinates
the inversions of which under the transformations are as-
sumed implicitly. Due to its hermiticity, the Lagrangian
is CPT invariant,

URMuQL +QLM †
uUR

CPT−→ QLM †
uUR +URMuQL , (24)

Alternatively, in the mass eigenstates, the Yukawa inter-
actions are invariant under CP and T, while the charged
current interactions violate CP and T individually and
are invariant under CPT. Note that CP violation is in-
herent in the Lagrangian Eq.3, which is T ′ and SU(5)
invariant.

Numerical Predictions.—The predicted charged
fermion mass matrices in our model are parametrized in
terms of 7 parameters,

Mu

ytvu
=

⎛

⎜

⎝

ig 1−i
2

g 0
1−i
2

g g + (1 − i
2
)h k

0 k 1

⎞

⎟

⎠
, (25)

Md, MT
e

ybvdφ0ζ0
=

⎛

⎜

⎝

0 (1 + i)b 0

−(1 − i)b (1,−3)c 0

b b 1

⎞

⎟

⎠
, (26)

With b ≡ φ0ψ′
0/ζ0 = 0.0029, c ≡ ψ0N0/ζ0 = −0.0169,

k ≡ y′ψ0ζ0 = −0.029, h ≡ φ2
0 = 0.008 and g ≡ φ′3

0 =
−9 × 10−6, the following mass ratios are obtained, md :
ms : mb ≃ θ4.7

c : θ2.7

c : 1, mu : mc : mt ≃ θ8

c : θ3.2

c : 1,
with θc ≃

√

md/ms ≃ 0.225. (These ratios in terms
of θc coincide with those give in [15].) We have also
taken yt = 1 and ybφ0ζ0 ≃ mb/mt ≃ 0.011. As a result
of the GJ relations, realistic charged lepton masses are
obtained. Making use of these parameters, the complex
CKM matrix is,

⎛

⎜

⎝

0.975e−i26.8o

0.225ei21.1o

0.00293ei164o

0.224ei124o

0.974e−i8.19o

0.032ei180o

0.00557ei103o

0.0317e−i7.33o

0.999

⎞

⎟

⎠
. (27)

The values for |VCKM | elements are in agreement with
current experimental values. The predictions of our
model for the angles in the unitarity triangle and the
Jarlskog invariant in the quark sector are,

β ≡ arg

(

−VcdV ∗
cb

VtdV ∗
tb

)

= 21.3o, sin 2β = 0.676 , (28)

α ≡ arg

(

−VtdV ∗
tb

VudV ∗
ub

)

= 114o , (29)

γ ≡ arg

(

−VudV ∗
ub

VcdV ∗
cb

)

= δq = 44.9o , (30)

J ≡ Im(VudVcbV
∗
ubV

∗
cs) = 1.45 × 10−5 , (31)

where δq is the CP phase in the standard parametriza-
tion. In terms of the Wolfenstein parameters, we have
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UT
TBM
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MX
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⎠
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⎜
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⎠
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CG coefficients in non-Abelian discrete symmetries  
➪ relative strengths and phases in entries of Yukawa matrices 

➪ mixing angles and phases (and mass hierarchy)



 Group Theoretical Origin of CP Violation

• if Z3 symmetric ⇒〈∆1〉= 〈∆2〉=〈∆3〉≡〈∆〉 real


• Complex effective mass matrix: phases determined by group theory 
(   L1          L2    ) ( R

1   R
2 )

C i j k : 
complex CG 
coefficients of 

G
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C112

Discrete 
symmetry G

Basic idea

C121 C211 C223

C112

C121

C211

C223

M.-C.C., K.T. Mahanthappa

Phys. Lett. B681, 444 (2009)



CP Transformation

• Canonical CP transformation


• Generalized CP transformation
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The canonical CP transformation

The canonical CP transformation

+ scalar field operator

�(x) =
Z

d3
p

1

2E~p

⇥
a(~p) e

�i p·x + b†(~p) e
i p·x⇤

annihilates particlecreates anti–particle
+ CP exchanges particles & anti–particles

(C P)�1 a(~p)C P = ⌘CP b(�~p) & (C P)�1 a†(~p)C P = ⌘⇤CP b†(�~p)

(C P)�1 b(~p)C P = ⌘⇤CP a(�~p) & (C P)�1 b†(~p)C P = ⌘CP a†(�~p)

phase factor
+ CP transformation of (scalar) fields

�(x)
C P7���! ⌘CP �⇤(Px)

freedom of re–phasing fields
Discrete Family Symmetries and Origin of CP Violation Generalizing CP transformations

Constraints on generalized CP transformations

Constraints on generalized CP transformations

+ generalized CP transformation

�(x)
fCP7��! UCP�

⇤( P x)

fields of the theory/modelP (t,~x) = (t,�~x)0

BBBBBBBBB@

"
�ri1

#
"
�ri2

#
...

1

CCCCCCCCCA

fCP7��!

0

BBBBBBBBB@

- %
Uri1

. &
- %

Uri2

. &
. . .

1

CCCCCCCCCA

0

BBBBBBBBB@

"
�⇤ri1

#
"
�⇤ri2

#
...

1

CCCCCCCCCA
field transforming in representation ri2

+ fCP depends on symmetry, not on model E disagreement w/ Holthausen,
Lindner, and Schmidt (2013)

Holthausen, Lindner, and Schmidt (2013)
+ consistency condition

⇢
�
u(g)

�
= UCP ⇢(g)⇤UCP

† 8 g 2 G

automorphism u : G ! Grepresentation matrixblock–diagonal unitary matrix
+ further properties:

• u has to be class–inverting
• in all known cases, u is equivalent to an automorphism of order two

bottom–line:
u has to be a class–inverting (involutory) automorphism of G

Ecker, Grimus, Konetschny (1981); Ecker, Grimus, Neufeld (1987);

Grimus, Rebelo (1995) 

unitary matrix



Generalized CP Transformation

•
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Generalized CP transformations

Generalized CP transformations

+ setting w/ discrete symmetry G

+ generalized CP transformation
Holthausen, Lindner, and Schmidt (2013)

+ invariant contraction/coupling in A4 or T
0

⇥
�12
⌦ (x3 ⌦ y3)11

⇤
10

/ �
�
x1 y1 + !

2
x2 y2 + ! x3 y3

�

! = e
2⇡ i/3

+ canonical CP transformation maps A4/T0 invariant contraction to
something non–invariant

Â need generalized CP transformation fCP: �
fCP7��! �⇤ as usual but

0

@
x1

x2

x3

1

A fCP7��!

0

B@
x
⇤
1

x
⇤
3

x
⇤
2

1

CA &

0

@
y1

y2

y3

1

A fCP7��!

0

B@
y
⇤
1

y
⇤
3

y
⇤
2

1

CA
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x
CP7��! x
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CP7��! y

⇤ & �
CP7��! �⇤
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Â need generalized CP transformation fCP: �
fCP7��! �⇤ as usual but

0

@
x1

x2

x3
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A fCP7��!

0

B@
x
⇤
1

x
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3

x
⇤
2

1

CA &

0

@
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y2
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⇤
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CA

Feruglio, Hagedorn, Ziegler (2013); Holthausen, Lindner, Schmidt (2013)

G and CP transformations do not commute 
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complex CGs ➪ G and physical CP transformations do not commute 

L(x)

L(Px)

L' (Px) 

ca
no

nic
al 

CP

autom
orphism

 u

Constraints on generalized CP transformations
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M.-C.C., M. Fallbacher, K.T. Mahanthappa, M. Ratz, A. Trautner (2014)

physical CP 
transformations

Constraints on generalized CP transformations
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physical CP 
transformations

u has to be a class-inverting,   
        involutory automorphism of G 
➪ non-existence of such automorphism  
        in certain groups 
➪ calculable physical CP violation in  
        generic setting

M.-C.C, M. Fallbacher, K.T. Mahanthappa, 
M. Ratz, A. Trautner, NPB (2014)

unitary 
transformation U examples: T7, ∆(27), …..



Novel Origin of CP (Time Reversal) Violation
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complex CGs ➪ CP symmetry 
cannot be defined for certain 

groups  

CP Violation from 
Group Theory!

M.-C.C, M. Fallbacher, 

K.T. Mahanthappa, M. Ratz, 


A. Trautner, NPB (2014)



A Novel Origin of CP Violation

• For discrete groups that do not have class-inverting, involutory automorphism, CP is generically 
broken by complex CG coefficients (Type I Group) 

• Non-existence of such automorphism ⇔ Physical CP violation 

•   
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Discrete Family Symmetries and Origin of CP Violation Introduction

Main messages of the previous talk

Main messages of the previous talk

+ Not every outer automorphism defines a physical CP transformation!

+ Three types of groups

Discrete (flavor)

symmetry G

Type I groups GI:

generic settings based on
GI do not allow for a
physical CP transformation

Type II: one can
impose a physical
CP transformation

Type II A groups GII A:

there is a CP basis in
which all CG’s are real

Type II B groups GII B:

there is no basis in which
all CG’s are real

M.-C.C, M. Fallbacher, K.T. Mahanthappa, M. 
Ratz, A. Trautner, NPB (2014)

CP Violation from Group Theory!

no class-
inverting 
involutory 

automorphism 
BDA 

non-BDA, class- 
inverting 

automorphism  



Examples

• Type I: all odd order non-Abelian groups


• Type IIA: dihedral and all Abelian groups


• Type IIB
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group 5 o 4 T7 �(27) 9 o 3

SG (20,3) (21,1) (27,3) (27,4)

(a) Examples for type I groups. Generally,
all odd order non–Abelian groups are of this
type with the caveat of groups that have a
class–inverting automorphism that squares
to a non–trivial outer one.

group S3 Q8 A4 3 o 8 T0
S4 A5

SG (6,1) (8,4) (12,3) (24,1) (24,3) (24,12) (60,5)

(b) Examples for type II A groups. The dihedral and all Abelian
groups are also of this type.

group ⌃(72) (( 3 ⇥ 3)o 4)o 4

SG (72,41) (144,120)

(c) Examples for type II B groups.

Table 2.1: Examples for the three types of groups: (a) I, (b) II A and (c) II B with their
common names and SmallGroups library ID of GAP [15].

with unitary W and

⌃ =

8
>>>>>>><

>>>>>>>:

⌃+ = , if U is symmetric,

⌃� =

0

BBBBB@

1
�1

. . .
1

�1

1

CCCCCA
, if U is anti–symmetric.

(2.38)

Note that, since representation matrices always have full rank, the anti–symmetric case
does not arise for odd–dimensional irreps [20], i.e. ⌃ always has full rank. We can, hence,
perform the unitary basis change

ri ! W
†
ri
ri , ⇢ri(g) ! W

†
ri
⇢ri(g)Wri 8 g 2 G , (2.39)

such that in the new basis the matrices Uri take the simple form

Uri ! W
†
ri
Uri W

⇤
ri

= ⌃ri . (2.40)

For type II A groups, all the ⌃ri ’s equal the identity matrix and the new basis is a CP
basis. In this basis all Clebsch–Gordan coe�cients are real [16].
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perform the unitary basis change

ri ! W
†
ri
ri , ⇢ri(g) ! W

†
ri
⇢ri(g)Wri 8 g 2 G , (2.39)

such that in the new basis the matrices Uri take the simple form

Uri ! W
†
ri
Uri W

⇤
ri

= ⌃ri . (2.40)

For type II A groups, all the ⌃ri ’s equal the identity matrix and the new basis is a CP
basis. In this basis all Clebsch–Gordan coe�cients are real [16].
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group 5 o 4 T7 �(27) 9 o 3

SG (20,3) (21,1) (27,3) (27,4)

(a) Examples for type I groups. Generally,
all odd order non–Abelian groups are of this
type with the caveat of groups that have a
class–inverting automorphism that squares
to a non–trivial outer one.

group S3 Q8 A4 3 o 8 T0
S4 A5

SG (6,1) (8,4) (12,3) (24,1) (24,3) (24,12) (60,5)

(b) Examples for type II A groups. The dihedral and all Abelian
groups are also of this type.

group ⌃(72) (( 3 ⇥ 3)o 4)o 4

SG (72,41) (144,120)

(c) Examples for type II B groups.

Table 2.1: Examples for the three types of groups: (a) I, (b) II A and (c) II B with their
common names and SmallGroups library ID of GAP [15].
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Outlook



Summary

• Fundamental origin of fermion mass hierarchy and flavor mixing still not 
known


• Neutrino masses: evidence of physics beyond the SM


• Symmetries: 

• can provide an understanding of the pattern of fermion masses and mixing

• Grand unified symmetry + discrete family symmetry ⇒ predictive power 


• Symmetries ⇒ Correlations, Correlations, Correlations!!! 


• Dirac vs Majorana?  - should remain open minded!

• naturally light Dirac neutrinos from discrete R-symmetry 

• suppressed nucleon decays and naturally small mu term 
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Summary

•Discrete Groups (of Type I) affords a Novel origin of CP violation:  
•Complex CGs ⇒ Group Theoretical Origin of CP Violation  

• NOT all outer automorphisms correspond to physical CP 
transformations 

• Condition on automorphism for physical CP transformation 

�46
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Discrete Family Symmetries and Origin of CP Violation Generalizing CP transformations

Constraints on generalized CP transformations

Constraints on generalized CP transformations

+ generalized CP transformation

�(x)
fCP7��! UCP�

⇤( P x)

fields of the theory/modelP (t,~x) = (t,�~x)
Holthausen, Lindner, and Schmidt (2013)

+ consistency condition

⇢
�
u(g)

�
= UCP ⇢(g)⇤UCP

† 8 g 2 G

automorphism u : G ! Grepresentation matrixblock–diagonal unitary matrix
+ further properties:

• u has to be class–inverting
the consistency condition

⇢ri

�
u(g)

�
= Uri

⇢ri
(g)⇤U

†
ri
8 g 2 G and 8 i

implies

�ri (u(g)) = tr
⇥
⇢ri

(u(g))
⇤
= tr

⇥
Uri
⇢ri

(g)⇤U
†
ri

⇤

= tr
⇥
⇢ri

(g)
⇤⇤
= �ri

(g)⇤ = �ri
(g�1) 8 i

group characters

• in all known cases, u is equivalent to an automorphism of order two

bottom–line:
u has to be a class–inverting (involutory) automorphism of G

class inverting, 
involutory 

automorphisms

physical CP 
transformations


