EFT for Non-Standard neutrino Interactions in Elastic Neutrino - Nucleus scattering

Michele Tammaro

University of Cincinnati

based on 1812.02778 with W. Altmannshofer and J. Zupan

May 30, 2019

Coherent Elastic neutrino - nucleus Scattering (CE ν NS).

Measured for the first time by COHERENT Collaboration in August 2017 with a detector composed by 14.6 kg of Csl. [Akimov et al.: 1708.01294]

This opens a new window in the search for Non-Standard Interactions (NSI)

New Physics can generate new NSI between neutrino and matter through new mediators [Wolfenstein '78]:

$$\mathcal{L}_{NSI} = \frac{G_F}{\sqrt{2}} \sum_{q} \left(\bar{\nu}_{\beta} \gamma_{\mu} P_L \nu_{\alpha} \right) \left(\varepsilon_{\alpha\beta}^{qV} \bar{q} \gamma^{\mu} q + \varepsilon_{\alpha\beta}^{qA} \bar{q} \gamma^{\mu} \gamma_5 q \right)$$

This includes all effective NSI operators at dimension 6, but in principle NP can generate a larger set of NSI.

Oscillations experiments can only access these dim 6 NSI.

Measurements of Elastic neutrino-nucleus scattering can probe different NSI.

We need a consistent theoretical framework to analyze these NSI from a low energy point of view.

 Build the complete set of operators up to dimension 7 describing NSI in CE_{\u03c0}NS;

• Match the quark NSI basis with the nuclear basis;

• Perform a phenomenological analysis to get lower limit on the NP scale.

Systematic framework of NSI by an Effective Field Theory. [W. Altmannshofer, MT, J. Zupan: 1812.02778.

See also: Farzan et al. 1802.05171; Billard et al. 1805.01798; Sierra et al. 1806.07424.].

New Physics at some scale $\sim \Lambda$, typical energy at experiment $p \ll \Lambda \rightarrow$ organize the Lagrangian as a series in p/Λ .

$$\mathcal{L}_{eff} = \sum_{i,d} \hat{\mathcal{C}}_i^{(d)} \mathcal{O}_i^{(d)} \quad \text{where} \quad \hat{\mathcal{C}}_i^{(d)} = \frac{\mathcal{C}_i^{(d)}}{\Lambda^{d-4}}$$

(1)

The "full theory" (at Λ scale) is unknown \rightarrow fit Wilson coefficients to experiments.

Measurements of Wilson coefficients give info on NP scale Λ up to coupling constants.

NSI complete operator basis

3 - Flavors basis (
$$\mu \sim 2 \text{ GeV}$$
): $f = e, \mu, u, d, s$

Dimension five:

$$\mathcal{Q}_1^{(5)} = \frac{e}{8\pi^2} (\bar{\nu}_\beta \sigma^{\mu\nu} P_L \nu_\alpha) F_{\mu\nu} \,,$$

NSI complete operator basis

3 - Flavors basis (
$$\mu \sim 2 \text{ GeV}$$
): $f = e, \mu, u, d, s$

Dimension five:

$$\mathcal{Q}_1^{(5)} = \frac{e}{8\pi^2} (\bar{\nu}_\beta \sigma^{\mu\nu} P_L \nu_\alpha) F_{\mu\nu} \,,$$

Dimension six:

$$\mathcal{Q}_{1,f}^{(6)} = (\bar{\nu}_{\beta}\gamma_{\mu}P_{L}\nu_{\alpha})(\bar{f}\gamma^{\mu}f), \qquad \mathcal{Q}_{2,f}^{(6)} = (\bar{\nu}_{\beta}\gamma_{\mu}P_{L}\nu_{\alpha})(\bar{f}\gamma^{\mu}\gamma_{5}f),$$

NSI complete operator basis

3 - Flavors basis (
$$\mu \sim 2~{
m GeV}$$
): $f=e,\mu,u,d,s$

Dimension five:

$$\mathcal{Q}_1^{(5)} = \frac{e}{8\pi^2} (\bar{\nu}_\beta \sigma^{\mu\nu} P_L \nu_\alpha) F_{\mu\nu} \,,$$

Dimension six:

$$\mathcal{Q}_{1,f}^{(6)} = (\bar{\nu}_{\beta}\gamma_{\mu}P_L\nu_{\alpha})(\bar{f}\gamma^{\mu}f),$$

$$\mathcal{Q}_{2,f}^{(6)} = (\bar{\nu}_{\beta}\gamma_{\mu}P_L\nu_{\alpha})(\bar{f}\gamma^{\mu}\gamma_5 f) \,,$$

Dimension seven:

$$\begin{aligned} \mathcal{Q}_{1}^{(7)} &= \frac{\alpha}{12\pi} (\bar{\nu}_{\beta} P_{L} \nu_{\alpha}) F^{\mu\nu} F_{\mu\nu}, \\ \mathcal{Q}_{3}^{(7)} &= \frac{\alpha_{s}}{12\pi} (\bar{\nu}_{\beta} P_{L} \nu_{\alpha}) G^{a\mu\nu} G^{a}_{\mu\nu}, \\ \mathcal{Q}_{5,f}^{(7)} &= m_{f} (\bar{\nu}_{\beta} P_{L} \nu_{\alpha}) (\bar{f}f) , \\ \mathcal{Q}_{7,f}^{(7)} &= m_{f} (\bar{\nu}_{\beta} \sigma^{\mu\nu} P_{L} \nu_{\alpha}) (\bar{f} \sigma_{\mu\nu} f) , \\ \mathcal{Q}_{9,f}^{(7)} &= (\bar{\nu}_{\beta} i \partial_{\mu} P_{L} \nu_{\alpha}) (\bar{f} \gamma^{\mu} \gamma_{5} f) , \\ \mathcal{Q}_{11,f}^{(7)} &= \partial_{\mu} (\bar{\nu}_{\beta} \sigma^{\mu\nu} P_{L} \nu_{\alpha}) (\bar{f} \gamma_{\nu} \gamma_{5} f) . \end{aligned}$$

$$\begin{aligned} \mathcal{Q}_{2}^{(7)} &= \frac{\alpha}{8\pi} (\bar{\nu}_{\beta} P_{L} \nu_{\alpha}) F^{\mu\nu} \widetilde{F}_{\mu\nu}, \\ \mathcal{Q}_{4}^{(7)} &= \frac{\alpha_{s}}{8\pi} (\bar{\nu}_{\beta} P_{L} \nu_{\alpha}) G^{a\mu\nu} \widetilde{G}_{\mu\nu}^{a}, \\ \mathcal{Q}_{6,f}^{(7)} &= m_{f} (\bar{\nu}_{\beta} P_{L} \nu_{\alpha}) (\bar{f} i \gamma_{5} f), \\ \mathcal{Q}_{8,f}^{(7)} &= (\bar{\nu}_{\beta} \overleftrightarrow{i} \partial_{\mu} P_{L} \nu_{\alpha}) (\bar{f} \gamma^{\mu} f), \\ \mathcal{Q}_{10,f}^{(7)} &= \partial_{\mu} (\bar{\nu}_{\beta} \sigma^{\mu\nu} P_{L} \nu_{\alpha}) (\bar{f} \gamma_{\nu} f), \end{aligned}$$

Oscillations

MSW effect described by an effective potential due to neutrino interactions with electrons and nuclei (for non-relativistic, electrically neutral and unpolarized medium)

Vector interactions: $\bar{\nu}\gamma_{\mu}P_{L}\nu$ (in the $q \rightarrow 0$ limit)

$$\left. \mathcal{V}_{\text{eff}}^{(-)} \right|_{\text{NSI}} \simeq G_F n_f \left(1 + \varepsilon_{\alpha\beta}^{fV} \right) \,, \quad \mathcal{V}_{\text{eff}}^{(+)} \sim \mathcal{O}\left(\frac{m_{\nu}^2}{E_{\nu}} \right)$$

New interactions:

$$\begin{split} S: \quad \bar{\nu}P_L\nu \,, & \bar{\nu}_\beta \stackrel{\leftrightarrow}{i\partial}_\mu P_L\nu_\alpha \,, & \mathcal{V}^S_{eff} \propto \frac{m_\nu}{E_\nu} \,, \\ T: \quad \bar{\nu}\sigma_{\mu\nu}P_L\nu \,, & \partial_\mu (\bar{\nu}_\beta \sigma^{\mu\nu}P_L\nu_\alpha) \,, & \mathcal{V}^T_{eff} = 0 \,, \end{split}$$

To probe these we need to look at $CE\nu NS$ (or DIS)

N.B.: tensor operator can contribute in polarized mediums [Bergmann, Grossmann and Nardi: 9903517]

Very low-energy neutrinos ($E_{\nu} \sim q \sim O(10)$ MeV) scattering elastically with non-relativistic nuclei in the detector.

 $q \ll \Lambda_{\rm ChEFT} \sim \mathcal{O}(1~{\rm GeV})$ effective ν interactions can be included in the chiral EFT framework.

Three steps:

1. quarks \rightarrow nucleons (hadronization)

Very low-energy neutrinos ($E_{\nu} \sim q \sim O(10)$ MeV) scattering elastically with non-relativistic nuclei in the detector.

 $q \ll \Lambda_{\rm ChEFT} \sim \mathcal{O}(1~{\rm GeV})$ effective ν interactions can be included in the chiral EFT framework.

Three steps:

- 1. quarks \rightarrow nucleons (hadronization)
- 2. nucleons \rightarrow Non-Relativistic nucleons (ChPT and Heavy Baryon ChPT)

Very low-energy neutrinos ($E_{\nu} \sim q \sim O(10)$ MeV) scattering elastically with non-relativistic nuclei in the detector.

 $q \ll \Lambda_{\rm ChEFT} \sim \mathcal{O}(1~{\rm GeV})$ effective ν interactions can be included in the chiral EFT framework.

Three steps:

- 1. quarks \rightarrow nucleons (hadronization)
- 2. nucleons \rightarrow Non-Relativistic nucleons (ChPT and Heavy Baryon ChPT)
- 3. NR nucleons \rightarrow nuclei (nuclear response functions)

At LO in $q/\Lambda_{\rm ChEFT}$ single nucleon interaction \rightarrow hadronization described with form factors for single-nucleon currents [Bishara et al.: 1611.00368, 1707.06998]

$$\begin{split} \langle N' | \bar{q} \gamma^{\mu} q | N \rangle &= \bar{u}'_N \left[F_1^{q/N}(q^2) \gamma^{\mu} + \frac{i}{2m_N} F_2^{q/N}(q^2) \sigma^{\mu\nu} q_{\nu} \right] u_N ,\\ \langle N' | \frac{\alpha_s}{8\pi} G^{a\mu\nu} \tilde{G}^a_{\mu\nu} | N \rangle &= F_{\tilde{G}}^N(q^2) \, \bar{u}'_N i \gamma_5 u_N \,, \end{split}$$

In general these new form factors are computed on Lattice.

At small q^2 expand form factors in a series.

$$F_i(q^2) = F_i(0) + F'_i(0)q^2 + \dots,$$

At LO in $q/\Lambda_{\rm ChEFT}$ single nucleon interaction \rightarrow hadronization described with form factors for single-nucleon currents [Bishara et al.: 1611.00368, 1707.06998]

$$\begin{split} \langle N' | \bar{q} \gamma^{\mu} q | N \rangle &= \bar{u}'_N \left[F_1^{q/N}(q^2) \gamma^{\mu} + \frac{i}{2m_N} F_2^{q/N}(q^2) \sigma^{\mu\nu} q_{\nu} \right] u_N ,\\ \langle N' | \frac{\alpha_s}{8\pi} G^{a\mu\nu} \tilde{G}^a_{\mu\nu} | N \rangle &= F_{\tilde{G}}^N(q^2) \, \bar{u}'_N i \gamma_5 u_N \,, \end{split}$$

In general these new form factors are computed on Lattice.

At small q^2 expand form factors in a series.

$$F_{\tilde{G}}^{N}(q^{2}) = \frac{q^{2}}{m_{\pi}^{2} - q^{2}} a_{\tilde{G},\pi}^{N} + b_{\tilde{G}}^{N} + \cdots,$$

At LO in $q/\Lambda_{\rm ChEFT}$ single nucleon interaction \rightarrow hadronization described with form factors for single-nucleon currents [Bishara et al.: 1611.00368, 1707.06998]

$$\begin{split} \langle N' | \bar{q} \gamma^{\mu} q | N \rangle &= \bar{u}'_N \Big[F_1^{q/N}(q^2) \gamma^{\mu} + \frac{i}{2m_N} F_2^{q/N}(q^2) \sigma^{\mu\nu} q_{\nu} \Big] u_N ,\\ \langle N' | \frac{\alpha_s}{8\pi} G^{a\mu\nu} \tilde{G}^a_{\mu\nu} | N \rangle &= F_{\tilde{G}}^N(q^2) \, \bar{u}'_N i \gamma_5 u_N , \end{split}$$

In general these new form factors are computed on Lattice.

At small q^2 expand form factors in a series.

NR nucleons currents $1/m_N$ expansion [Jenkins et al. : 91]

d=0

$$\mathcal{O}_{1,p}^{(0)} = (\bar{\nu}_{\beta}\gamma_{\mu}P_{L}\nu_{\alpha})(v^{\mu}\bar{p}_{v}p_{v}), \qquad \mathcal{O}_{2,p}^{(0)} = (\bar{\nu}_{\beta}\gamma_{\mu}P_{L}\nu_{\alpha})(\bar{p}_{v}S_{N}^{\mu}p_{v}), \\ \mathcal{O}_{3,p}^{(0)} = (\bar{\nu}_{\beta}P_{L}\nu_{\alpha})(\bar{p}_{v}p_{v}), \qquad \mathcal{O}_{4,p}^{(0)} = (\bar{\nu}_{\beta}\sigma_{\mu\nu}P_{L}\nu_{\alpha})(\bar{p}_{v}\sigma_{\perp}^{\mu\nu}p_{v}), \\ \mathbf{d=1}$$

$$\mathcal{O}_{1,p}^{(1)} = (\bar{\nu}_{\beta} P_L \nu_{\alpha}) \Big(\bar{p}_v \frac{iq \cdot S_N}{m_N} p_v \Big) , \qquad \mathcal{O}_{2,p}^{(1)} = (\bar{\nu}_{\beta} P_L \nu_{\alpha}) \Big(\bar{p}_v \frac{p_{12} \cdot S_N}{m_N} p_v \Big) ,$$

d=2

$$\mathcal{O}_{1,p}^{(2)} = \frac{iq_{\mu}p_{12,\nu}}{m_N^2} (\bar{\nu}P_L\nu) (\bar{p}_v \sigma_{\perp}^{\mu\nu} p_v) \,,$$

Matching 3F - NR basis

$$c_{3,p}^{(0)} = F_G^p \hat{\mathcal{C}}_3^{(7)} + \sum_q \left(F_S^{q/p} \hat{\mathcal{C}}_{5,q}^{(7)} + Q_q \frac{e^2}{8\pi^2} \frac{2\bar{E}_{\nu}}{q^2} F_1^{q/p} \hat{\mathcal{C}}_1^{(5)} \right),$$

Different NSI can match into the same operator in the nuclear basis.

Nuclei structure described by nuclear response functions W_N .

[Fitzpatrick et al.: 1203.3542]

Nuclei structure described by nuclear response functions W_N . [Fitzpatrick et al.: 1203.3542]

• Spin-Independent: $\sigma_{tot} \propto \sigma_N A^2 \rightarrow$ prefer high A materials for detectors (for Csl $A \simeq 130 \rightarrow 10^4$ enhancement);

Induced by vector and scalar operators.

Nuclei structure described by nuclear response functions W_N . [Fitzpatrick et al.: 1203.3542]

• Spin-Independent: $\sigma_{tot} \propto \sigma_N A^2 \rightarrow$ prefer high A materials for detectors (for Csl $A \simeq 130 \rightarrow 10^4$ enhancement);

Induced by vector and scalar operators.

• Spin-Dependent: $\sigma_{tot} \propto \sigma_N S_A$ (nuclear spin $S_A \sim \mathcal{O}(1)$);

Induced by axial, pseudoscalars and tensor operators.

Nuclei structure described by nuclear response functions W_N . [Fitzpatrick et al.: 1203.3542]

• Spin-Independent: $\sigma_{tot} \propto \sigma_N A^2 \rightarrow$ prefer high A materials for detectors (for Csl $A \simeq 130 \rightarrow 10^4$ enhancement);

Induced by vector and scalar operators.

• Spin-Dependent: $\sigma_{tot} \propto \sigma_N S_A$ (nuclear spin $S_A \sim \mathcal{O}(1)$);

Induced by axial, pseudoscalars and tensor operators.

Differential cross section:

$$\frac{d\sigma}{dE_R}(E_\nu) \sim R_\nu W_N , \qquad R_\nu \left(\hat{\mathcal{C}}_i^{(d)}, F_i(q^2), E_\nu, q^2 \right) \text{ kinematic factors}$$

Theory uncertainty

Expected number of events per neutrino flavor.

$$N_{\alpha} = n_N \int dE_R dE_{\nu} \phi_{\alpha}(E_{\nu}) \frac{d\sigma}{dE_R}(E_{\nu}) \mathcal{A}(E_R)$$

Uncertainties from nuclear response function (10%) + quenching (25% at COHERENT) + neutrino flux (10%) \Rightarrow Total theory uncertainty: $\sigma_{\alpha} = 28\%$

Nucleon form factors introduce additional uncertainty! [Bishara et al.: 1707.06998]

opers.	F_i	σ_{F_i}	σ_{lpha}
$\hat{\mathcal{C}}_{1}^{(5)}, \hat{\mathcal{C}}_{1,u/d}^{(6)}, \hat{\mathcal{C}}_{8,u/d;10,u/d}^{(7)}$	$F_1^{u,d/N}(0)$	0%	0.28
$\hat{\mathcal{C}}_{1,s}^{(6)},\hat{\mathcal{C}}_{8,s;10,s}^{(7)}$	$F_1^{s/N}{}'(0)$	50%	0.57
$\hat{\mathcal{C}}^{(6)}_{2,u/d},\hat{\mathcal{C}}^{(7)}_{9,u/d;11,u/d}$	$F_A^{u,d/N}(0)$	3-7%	0.34
$\hat{\mathcal{C}}_{2,s}^{(6)},\hat{\mathcal{C}}_{9,s;11,s}^{(7)}$	$F_A^{s/N}(0)$	16%	0.37
$\hat{\mathcal{C}}_{5,u/d}^{(7)}$	$F_S^{u,d/N}(0)$	28-31%	0.40
$\underline{\hat{\mathcal{C}}_{5,s}^{(7)}}$	$F_S^{s/N}(0)$	18%	0.33

Table continued...

opers.	F_i	σ_{F_i}	σ_{lpha}
$\hat{\mathcal{C}}_3^{(7)}$	$F_G^N(0)$	2%	0.28
$\hat{\mathcal{C}}_4^{(7)}$	$F^N_{\tilde{G}}(q)$	20%	0.39
$\hat{\mathcal{C}}_{7,u}^{(7)}$	$F_{T,0}^{u/N}(0)$	2%	0.34
$\hat{\mathcal{C}}_{7,d}^{(7)}$	$F_{T.0}^{d/N}(0)$	4%	0.34
$\hat{\mathcal{C}}_{7,s}^{(7)}$	$F_{T,0}^{s/N}(0)$	270%	2.7
$\hat{\mathcal{C}}_{6,q}^{(7)}$	$a_{P,(\pi/\eta)}^{q/N}$	4-11%	0.35

An improvement from Lattice calculations is necessary to provide better predictions.

Results at COHERENT

Assume $\mathcal{C}_i^{(d)} = 1 \rightarrow \operatorname{put}$ lower limit on Λ

📕 COHERENT 📕 CHARM 📕 Nal 2T 📒 Borexino

Bounds on dim 7 operators are weak, "light" NP is not excluded [Pospelov et al.: 1311.5764, Bertuzzo et al. : 1808.02500]

Michele Tammaro (University of Cincinnati)

Bounds of $\mathcal{O}(300)$ GeV for SI $C_{1,u(d)}^{(6)}$, much weaker for $C_{1,s}^{(6)}$ and $C_{2,q}^{(6)}$.

$$\mathcal{Q}_{1}^{(5)} = \frac{e}{8\pi^{2}} (\bar{\nu}_{\beta} \sigma^{\mu\nu} P_{L} \nu_{\alpha}) F_{\mu\nu} , \quad R_{\nu} \propto 1/\vec{q}^{\,2} \qquad \hat{\mathcal{C}}_{1}^{(5)} \sim \frac{10^{-3}}{\text{GeV}} \to \Lambda \sim 1 \text{TeV} \,.$$

$$Q_1^{(5)} = \frac{e}{8\pi^2} (\bar{\nu}_\beta \sigma^{\mu\nu} P_L \nu_\alpha) F_{\mu\nu} , \quad R_\nu \propto 1/\vec{q}^2 \qquad \hat{\mathcal{C}}_1^{(5)} \sim \frac{10^{-3}}{\text{GeV}} \to \Lambda \sim 1 \text{TeV} .$$

$$Q_{6,f}^{(7)} = m_f(\bar{\nu}_\beta P_L \nu_\alpha)(\bar{f}i\gamma_5 f), \quad R_\nu \propto \vec{q}^4, \quad \hat{\mathcal{C}}_{6,u}^{(7)} \sim \frac{10^{-1}}{\text{GeV}^3} \to \Lambda \sim 2\text{GeV}.$$

$$Q_{5,f}^{(7)} = m_f(\bar{\nu}_\beta P_L \nu_\alpha)(\bar{f}f), \quad R_\nu \propto \vec{q}^2, \quad \hat{\mathcal{C}}_{5,u}^{(7)} \sim \frac{5 \cdot 10^{-4}}{\text{GeV}^3} \to \Lambda \sim 12 \text{GeV}.$$

	////		T		0
	$T_{\rm th}$ (KeV)	Base (m)	Target	IVI (KG)	Source
Nal 2T COH	13	28	Nal	2000	SPD
Ge COH	5	22	Ge	10	SPD
LAr COH	20	29	Ar	22	SPD
RED100	0.5	19	Xe	100	3 GW
MINER	0.01	1	⁷² Ge+ ²⁸ Si	30	1 MW
CONNIE	0.028	30	Si	1	3.8 GW
RICOCHET	0.05 - 0.1	< 10	Ge/Zn	10	8.54 GW
NU-CLEUS	0.02	< 10	$CaWO_4$, Al_2O_3	0.001	8.54 GW
νGEN	0.350	10	Ge	4×0.4	3 GW
CONUS	< 0.3	17	Ge	4	3.9 GW
TEXONO	0.15 - 0.2	28	Ge	1	2×2.9 GW

A large number of experiments are being planned/built

Reactor experiments fluxes $\sim 2 \times 10^{20} \bar{\nu}_e / s / \text{GW}$ with max energy $\sim 8 \text{ MeV}$.

 Elastic neutrino - nucleus scattering provides a possible probe of NSI not accesible to neutrino oscillation experiments;

• CE*v*NS can be systematically described by an EFT expansion;

• We provide the basis up to dimension 7 operators and the lower limits on NP scale;

• A large number of experiments will look at $CE\nu NS$ in the near future!

Thanks!