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All spherically symmetric solutions in GR turn out to be
singular.

DEMONSTRATION OF THE NON-EXISTENCE OF GRAVITATIONAL

FIELDS WITH A NON-VANISHING TOTAL MASS FREE OF SINGULARITIES

By A. BEINSTEIN
(Institute for Advanced Study, Princeton, New Jersey)

Schwarzschild’s solution for a gravitational field with central sym-
metry, as it is well known, becomes singular in the neighborhood of
the origin. It is also generally regarded as unlikely that within the
frame of the generalized theory of relativity of the pure gravitational
field, apy solutions may exist that represent particles of finite no
vanishing total mass without singularities. In this paper I give a
proof of the non-existence of such solutions.

. We shall confine ourselves here to such solutions which are plon-
ged in an euclidean space.

Revista de la Universidad Nacional de Tucuman, A2 (1941) 11.



Nakedness and censorship

c.f., T. P. Singh, J. Astrophys. Astr. 20, 221 (1999)



Under reasonable, generic, initial conditions in GR, singular
solutions 1nevitably arise in GR (Penrose-Hawking theorem).

A singularity represents a failure in the spacetime continuum,
where the notion of geometry breaks down, the “normal”

physical laws do not apply and it 1s no longer possible to
predict the outcome of experiments.

Singularities causally connected to us —naked singularities-

give rise to serious conceptual problems: physics becomes
unpredictable (useless).

“Green slime, lost socks and broken TV sets could emerge
from naked singularities” (J. Earman)




Static Schwarzschild metric:

ds* = =(1-22)df* +(1-22) " dr + 1 d Q"

For m>0 the horizon at ¥=2m hides the curvature singularity at »=0,
implementing cosmic censorship.

If m<O0 there 1s no horizon, the curvature singularity at »=0 is a
Naked Singularity (NS).



Cosmic Sensorhip (CC): Roger Penrose (1968) conjetured
that NSs cannot exist in nature.

* (CC seems to be true, but there 1s no proof of it.

C
e T

aristodoulu: Collapsing matter can form NSs.

n1s, however, requires finely tuned 1nitial conditions.

=» The need of “fine tuning” suggests that NSs could be

perturbatively unstable: can quantum mechanics rule
out NVSs?

=» Can quantum effects avoid NSs as they prevent the
collapse of the electron to 7=0 1n the hydrogen atom?
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Christodoulu: Collapsing matter can form NSs.

e This, however, requires finely tuned 1nitial conditions.

=» The need of “fine tuning” suggests that NSs could be

perturbatively unstable: can quantum mechanics rule
out NVSs?

=» Can quantum effects avoid NSs as they prevent the
collapse of the electron to 7=0 1n the hydrogen atom?

Intractable problem in 3+1 dimensions: Go down to 2+1




The 2+1 black hole

M. Bafados, C.Teitelboim, J.Z. (1992)



All solutions of Einstein’s equations 1n 2+1dimensions
are spacetimes of constant negative curvature:

R 4 %e'e" =

0

(Rj‘fv =—[5%6/ - 5355]1‘2)

e 2+1 black holes are spherically symmetric, stationary
solutions labeled by two constants of integration:
mass (M) and angular momentum (J).

* These spaces have the same constant negative
curvature (-1-?) for all values of M and J.
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Black hole in 2+1 dimensions

Static case

J=0

M>(0 wmsmp BH; horizon at 7, =M

M= -1 AdS spacetime (A= —1)

M<0 No horizon: Naked singularity



2+1 BH spectrum
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Spinning 2+1 black hole

dr*

2

70 ds® = - f1(r)di® +

S+ P (Ndt +dg)’

M>1|J|>0 wmm==) BH; horizons r,>0
M=-1, J=0 AdS
M<|J|,#-1 === Naked singularities




Spectrum of rotating 2+1 BHs

Extremal M=|J|

O

=J=

Vacuum, M




How is a 2+1 BH made?

M. Banados, C.Teitelboim, M.Henneaux, J.Z. (1993)



* The 2+1 BHs are obtained by identifications in 4dS, ., defined
by the pseudoesphere

—(xo)z—(x1)2+(x2)2+(x3)2 —_1

which has 6 Killing vectors:
1 7 ab 1 7 ab
k=2k"(x0,-x0)=5k"J  k €s0(2,2)

Thus, the BH geometry is locally AdS (not globally)

® Identifying (quotienting) by up to two commuting Killing
vectors does not change the local geometry: the 2+1 BHs are
locally isometric to AdS,,,

® Not all Killing vectors yield BHs.




Identifications by Killing vectors respect the local geometry:

ki, k,, ky: 1sometries

/ R2/k;

Rk,

k, leaves no fixed points
mm) no singularities

r=0 fixed point of k;
m) conical singularity




Boosting black holes

The freedom to make Lorentz transformations in AdS,
can be exploited to boost the 1dentifying Killing vectors.
The resulting black holes have different M and J .

> AZ’tgzﬂ ) k= Ak

In particular, a static BH (M,#0, J,=0) can be turned into
a spinning one (M=#0, J£0) by a “Lorentz” boost:

M=UB2LN | J=22 )M [Mz—Jz =M§]

1-Q? 1-Q?




2+1 black hole states

Inning

Sp

Extremal M=|J|




Conical singularities

0.Migkovi¢, J.Z. (2009)



Angular defect in 2+1 D 1D Defect

time

Identification in the x’-x° plane generates a conical singularity
in the set of fixed points of the Killing vector:

= -2ma (x,0;— X5 0,)

= -27a 0,

Angular defect ¢y Sjlikel Cl}i‘Vature
singularity




A conical defect/excess in 2+1 dim. 1s a localized, static/stationary,
spherically symmetric geometry.

A conical singularity 1s indistinguishable from a black hole at large
distance (like planets and black holes).

Unlike black holes, a conical singularity 1s not surrounded by an
event horizon ™) Naked Singularity orbifold AdS./k)




The conical geometry looks like a BH:

ds’® = —(r2 —M)a"t’2 + (r2 —M)_IdI”2 + r2d¢2

where the “mass” is negative, M = —(1 — 0{),2 and related to the

deficit angle, Ap = 27 = anl —\-M ]

The exceptional cases are:

a=0M=-1 anti-de Sitter; no deficit
a=1, M =0

zero mass; maximum deficit (27)

For —1< M < 0 these are naked singularities that behave as point
particles; quite harmelss otherwise.




2+1 BH-NS spectrum

M

g B

J

> 0< a <I: angular deficit

> IR o > 1: angular excess

Like BHs, conical singularities can also acquire angular momentum...




NSs with £4<0

closed timelike curves!
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Black hole identifications
AdS |- =)+ () + () =-1
* Generic BH: . >r >0, M>|J|#£0
S.=oaJ,-alJ, o=,

* Extremal BH: . =r >0, M=J#0
1
§Ext = Ot+(J01 _J23) T E(le +J03 +J02 _J13)

* Zero mass BH: r, =r_ =0, M=J=0
1
So =7+t =)

These are all non-compact elements of SO(2,2)
. >0 mm) No closed timelike curves
* No fixed points mmsp No conical singularities




Conical identifications
AdS 50 (Y - (Y + () () =1

* Generic spinning cone, M<-|J|#£0
§+- - ﬁ+J01 + /’)-J23 p. “-M+J xN-M-J

* Extremal cone, M=-|J|#0
gExt = /3+(J01 _J23)+%(J12 +J01 +J23 _J13)

* Zero mass cone, M=J=0.

50 - %(le +J20 +Jo3 +J31)

These are all compact elements of SO(2,2)
. ¢-&>0 m=) No closed timelike curves
 r=0 fixed point ==y Conical singularity




Quantum effects

M.Casals, A.Fabbri, C.Martinez, J.Z. (2016, 2017)



Quantization

In 2+1 dimensions GR has no local degrees of freedom
= No gravity waves
= No gravitons —3 no gravitational quantum corrections.

Hence, the only quantum effects may be due to matter.

Strategy:

=» Consider a conformally(*) coupled scalar field ¢ with
transparent boundary conditions.

=» Compute the renormalized stress- -energy tensor <T >for the
quantum fluctuations around &, = g v ¢ =

=» Compute the modified geometry (back-reaction).

(*) Enormous simplification. Exact solutions; no tail; analytic results




Renormalized Stress-Energy Tensor (RSET):

Since the BH and the conical geometries are obtained by i1dentifications
in the AdS covering space, the stress-energy tensor can be obtained
from the one 1n the embedding spacetime by the method of 1images.

In the covering space the RSET for a conformally coupled scalar 1s

(7.,0) =limk [3vax g, gVIVE VIV - Lo ]G(x',x)

47>

where G(x’,x) is the two-point function,

G(x',x) =4 |x-Xx' |)‘1

and | x —x'|= \/ (x=x")"(x=x") is the geodesic distance measured
in the embedding space.




Method of images:

The two-point function in the BH/cone can be obtained by applying the
identification operator to x "

G(x',x)= I G(x,H"@x'"]),

where H(S) is the matrix corresponding to the identification vector ¢ .

For the generic (spinning) BH,

cosh(ma ) sinh(7e, ) 0 0
sinh(7a,)  cosh(mra,) 0 0
0 0 cosh(ma ) smh(ma )
0 0 sinh(ste ) cosh(ma )

where a, =vM +J +\M -J.

HP(8) =




Method of images:

Similarly, for the generic (spinning) cone,

cos(7B ) 0 0 —sin(7p_)

0 cos(7p,) —sin(7p, ) 0
Here(e) = 0 sin(:rﬁ+) cos( 7B, ) 0

| sin(sp.) 0 0 cos(7B_)

Where[J’i =\/—M+J i\/—M—J.

With these matrices, can compute A" and finally <T ° >

N.B.: The conical geometry is obtained from the BH by analytic
continuation [ M —=>-M ]




A (very long!) direct and calculation yields, for a massless scalar
field on a static BH (J=0)

diag(1,1,-2) ,

K<fu>BH _ 1, M7 - cosh(2nm~N M )+3

- 2\/51”3 el [c:osh(Zth\/M)—l]?’/2

and on the static conical singularity,

K<fw>NS _ IP(—]\_4)3/2 i cos(2nm~-M )+3

T or 2 Teosamad ity dag(1:72)

n=1

which corresponds to the analytic continuation M —> —M .

In both cases, <T“V> = £M)

7”3




A (very long!) direct and calculation yields, for a massless scalar
field on a static BH (J=0)

K<fu>BH . 1,M>? %Nosh(Znﬂ\/H)+3

B W n=1 [Cow?’/z diag(1,1,-2) ,
(Ip=hG)

and on the static conical singularity, @

K<fw>NS _ IP(—]\_4)3/2 i cos(2nm~-M )+3

T or 2 Teosamad ity dag(1:72)

n=1
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7”3

In both cases, <T“V> = £M)




The summation 2, results from the fact that these geometries are

n=1

multiply connected.

* For the BH there are infinitely many null geodesics connecting a
point to itself, /N = .

\

/

* In a conical geometry, the number or self-intersecting null paths 1s
finite and depends on the angular deficit at the apex of the cone:

N, = [1- AQm)=[-M] "2




These contributions to the stress-energy modify Einstein’s equations,
and change the geometry. A direct calculation in both cases gives

dS2=— 2 . 2 2 F(M)l) dl/' +I/'2d82

where F(M) ~ O(h) > 0.

Effect of quantum
corrections

The modified geometries have a horizon both for M >0 and M <0,
since 7 _ M — F(I{w) -0

always has real solutions for F(M) >0.

No matter how large the conical defect is, the quantum corrections
of the vacuum end up dressing the naked singularity.




——

The horizon for the BH grows as a
consequence of the quantum
corrections, or ~Il,> 0.




——

The horizon for the BH grows as a
consequence of the quantum
corrections, or ~Il,> 0.

The quantum corrections generate a horizon for the
conical singularity, dressing up its nakedness, r'° ,>0.
The naked singularity becomes a black hole.




Caveat:

A static BH 1s an extremely exeptional case: 1t would
require infinitely fine-tuned initial conditions to produce
one by collapsing matter.

Similarly, a NS corresponding to a real particle 1s likely
to have nonvanishing spin.

Will our results survive if the BH or NS were not exactly
static?

(Our conclusions may be accidentally due to the
exceptional fine-tuned static case. The horizon could go
away if the BH / NS have nonzero angular momentum...)




Are our conclusions still valid for J# 0 ?

This 1s a difficult question. There are several different
cases to be considered, depending on the regions
connected by the geodesics 1n a rotating BH:

0<r<r_, r<r<r,, r<r<ow
For a spinning conical singularity life 1s even harder.

Problem of resonance: If S, = (rational) x f_, then (HCre)"
becomes proportional to the identity and<T ; V> blows up!

Luckily, this happens for angular momentum above a
finite threshold, J>J*

(See arxiv:1608.05366 [PRL (2017)] and forthcoming paper.)




Backreacted BH geometry (J # 0)

~~

-
~ -

Classical BTZ black hole: Quantum-corrected black hole: The

The two horizons at radii 7, outer horizon is slightly larger than its

and  respectively. classical counterpart, 9 =r, + O(h).
A hard surface forms at the inner
horizon r .



Backreacted NS geometry (J # 0)

Infinite curvature,
<« naked singularity

A

\_/
— > I
spin

Classical naked singularity:
No horizon surrounds the
conical singularity.

ra, ~O(h)

@
— )'/

spin

Quantum-corrected singularity:
A horizon forms around the
conical singularity so that for an
external observer it looks like a
black hole.



Summary



@ Black holes (M > |J|) and conical geometries (M <-|.J|)
are complementary parts of the 3D BH spectrum

® Including a quantum scalar field makes the BH horizon
grow, ri,>r< .

® The quantum corrections produce a horizon around the

otherwise naked singularity.

@ These effects hold for generic spinning BHs and NSs.

© Cosmic censorship 1s a result of quantum mechanics.




Quantum effects not only prevent the collapse of the
electron i1nto the atomic nucleus, they prevent the
formation of naked singularities. They could also provide
mechanisms to avoid other singularities, like the BB.
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It seems that Einstein was right after all: Nature does
abhor singularities.

This 1s not, however, a feature of the classical theory, but
the result of a quantum effect.
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Feliz cumplearios, Marcelo!




