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Nucleon (hadron) structure

@ Formidable theoretical problem (nonperturbative strongly interacting ggg ensemble)
@ Parton distributions: convenient interface between theory and experiment

Relations between parton distributions

[Fig. by Markus Diehl]
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@ Helicity of partons/target might be flipped
@ Each distribution might depend on flavor
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Factorization theorem

@ Bjorken kinematics

2
Q° — 00, xg = const

o A~ Cprocess ® Htarget
@ Multiparton distributions
are suppressed in this
kinematics

Curse of dimensionality

@ Only formfactors and
PDFs are reasonably
measured.
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Factorization theorem

@ Bjorken kinematics

2
Q° — 00, xg = const

o A~ Cprocess ® Htarget

Challenge

@ No first principle
parametrization

@ Extracted objects are
subject to nontrivial
physical constraints




GPD: formal definitions, models, constraints
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GPDs from nonperturbative models of nucleon structure (yQSM, NJL, AdS/CFT, ...)

@ If “wave functions” of quarks are known, evaluation is quite straightforward:

Xé-a Z/dpl(bq( §7P+A2>r¢q<x+§vﬁl_§>

@ Advantage: Automatically satisfy polynomiality & positivity constraints
@ Yet agreement with experimental data is marginal.

v

@ =-Phenomenological approach predominant in the literature (EPJC 59, 809; EPJC
39, 1; PRD 72, 054013; NPB 841, 1, ...)



GPD extraction from DVCS

(EIC white paper, 1212. 1701)

Current DVCS data at co\llders
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@ Theoretically the cleanest,

best understood is DVCS

@ Interference with BH

. =-phase of the amplitude

5 " - @ Polarization asymmetries
x = separate H, E, H, E

@ Sensitive only to

Current DVCS data at ﬂxed targets:

X CLAS-Aw
02l

Planned DVCS at fixed targ.:
COMPASS- dodt, Acsu. A
JLAB12- dordt, AL, Au.

Q? (GeV?d)

Kinematic coverage of DVCS experiments.
Hpvces = Z efH  + O(as)H®
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@ DVMP may give access to GPD flavor structure, but theoretically is more
complicated



Challenges in GPD extraction from pion production
(CLAS)
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Challenge in GPD extraction from vector mesons
@ Probe unpolarized GPDs H, E, smaller tw-3 contributions

Vector meson wave function unknown
o controlled by confinement (not SCSB), depends heavily on the model

Popular parametrizations:

AdS/CFT wave function

; 4 [log(1/x
(k) = NP2 /M

o B0 10]

o fq(x), fg(x)-unknown functions,

can be fixed from (hypothetical)
DIS on p-mesons

Uncertainty in WF translates into significant
uncertainty in extraction of GPDs from this 2§

channel

Boosted Gaussian WF
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What we suggest 7

@ Charged current 7/K-production

Advantages

@ V — A structure of interaction =probes unpolarized (“large”) GPDs

H, E; much smaller contamination by higher twist corrections

@ Good knowledge of pion and kaon WF, closeness of wave functions due
to SCSB=-can extract full flavor structure of GPD




Where such processes can be studied ?

MINERvA@Fermilab

@ Extremely large luminosity

Both v, and 7, can be used
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@ Analysis of data in Bjorken kinematics

has already started
UTFSM MINERVA group: Jonathan Miller et al.

0.“2.”4.”6”.

Jefferson Laboratory

@ Monochromatic beam, E. = 11 GeV
@ Luminosity £ = 10*°cm2s!

@ Beam/target can be polarized
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MINERVA experiment (neutrinos)
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Advantages

@ Extremely large luminosity
@ Both v, and 7, can be used (W*-induced production)

vy

Challenges

@ Beam not monochromatic, should consider spectrum
averaged observables

@ Detector=extended nuclear target, nuclear effects are
important

@ Accessible Q2 is not very large, loop corrections might
be pronounced (will DUNE improve the resolution?)




Flavor combinations of GPDs probed by various processes
(PRD 86 (2012) 113018)

o Experimentally easiest:vp — =7 p, 7p — utn~p (ongoing analysis by
MINERVA group QUSM)
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e Can probe 29 CC processes in total if use SU(3) flavour relations for
transition GPDs H,_,y, e.g.

Hp%n = H, (Xyé-v t) — Hy (Xaév t)

@ In the NLO the coefficient functions @ get much more complicated



Loop corrections

@ ep experience: loop corrections are large in this kinematics
(JETPL 80, 226; EPJC 52, 933)

@ Challenge: separate corrections to coefficient function and
GPD/DA~ evolution kernel (scale pr)

@ NLO coefficient functions @ Sea quarks contribution
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Loop corrections

@ Weak dependence on factorization scale for ur 2 3 GeV
@ Scale choice: ur = ur = Q
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@ Estimates of NNLO corrections: ur = pr € (0.5, 2)Q

@ NLO corrections increase all the cross-sections 250%
S =NNLO corrections are needed !
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Contaminations by twist-3 & Bethe-Heitler mechanisms

Twist-3 contributions
@ Quark spin flip = probe transversity GPDs Hr, Er, Hr, Et (large at CLAS6)

Bethe-Heitler mechanism (diagrams b, c)
@ formally is suppressed by aem

@ kinematically is enhanced by

Q?/ (t-a2(Q?)
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@ Both mechanisms generate azimuthal asymmetry
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@ Expect that harmonics

hadronic plane

’/' leptonic plane



Charged current studies in ep experiments

@ (HERA: luminosity insufficient for charged current exclusive processes)

Kinematic coverage of JLAB

@ Monochromatic beam, E. = 11 GeV
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@ Beam/target can be polarized
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Suggested process: ep — vemw p
@ Neutrino ve momentum reconstructed via
momentum conservation
/
Pv=pP +Pr—P— Pe

-final hadrons are charged, kinematics
resolution should be good.

v

@ Potentially can extend also to other members
of mesonic and baryonic flavour multiplets,

SU(3)¢-relations =-GPD flavour combinations



Results for the e — vo.M (NLO in

dG(H)/dG(u”)
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Results for the e — veM (NLO in «y)
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@ For K-mesons, suppression by an order of mag-
nitude (Cabibbo forbidden), smaller statistics
@ Sizeable negative contribution from interference

HG+GH

@ For neutrons the cross-section is of the same order
(~ 40% less than in ep — vem ™ p), but kinematics
reconstruction might be poorer



Contaminations by twist-3 & Bethe-Heitler mechanisms

@ Generate azimuthal asymmetry, quantify effect in terms of angular harmonics

d4o_(tot)
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Twist-3 effects

@ Quark spin flip = probe (poorly
known) transversity GPDs

Hr, Et, i:/T7 ET (Iarge at CLASG)
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Bethe-Heitler mechanism

@ interaction with hadron via elastic
t-channel photon exchange only

@ suppressed by aem, kinematically is
enhanced by Q*/ (t - a2(Q?))
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Summary

@ Charged current Deeply Virtual Pion Production can be used as an additional source
of information on proton structure (its GPDs)

* Can be studied at vp (ongoing analysis) and ep experiments thanks to large
luminosity of modern experiments.

* Has sensitivity to unpolarized GPDs H, E (large components); expect small
contamination by higher twist and Bethe-Heitler corrections.

* NNLO analysis of coefficient functions is needed if Q? is not very large
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