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Dear Marcelo,

my congratulations and welcome to the club

“ Age appears to be best in four things: old wood best to burn, old wine
to drink, old friends to trust, and old authors to read” (Francis Bacon)
and in theoretical physics (E.L.)

DIS as a probe of entanglement E. Levin 3



Motivations and Disclaimers:

O How does the pure state in the r.f. evolves to the set of ‘quasi free’ patrons in the
IMF?

M.Martinelli:“ Photons, Bits and Entropy: From Planck to Shannon at the Roots of the Information Age” ,Entropy,19, 347 (2017)
@ What is the rigorous definition of ‘quasi free’ parton distribution?

e In DIS we measure a tube of radius 1/Q? and longitudinal size 1/(max) (region
A):

lcompt
In DIS we can measure pa = trpp.
Is there an EE Sg = —tr[pa Iln p ] associated with DIS experiment?

If yes how does it relates to the pdf?
PDF versus multiplicity in DIS?

What we need to use instead of patrons deep in the saturation region?
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Do not expect:

e A thorough knowledge of EE
C. Holzhey, F. Larsen and F. Wilczek, Nucl. Phys. B 424 (1994) 443, [hep-th/9403108];
P. Calabrese and J. L. Cardy, Int. J. Quant. Inf. 4 (2006) 429, [quant-ph/0505193].

O A rigorous answer to every questions.

e A list of prediction for DIS deep in the saturation region.

The paper (and this talk) is an attempt
to give the answers to all above questions,
based on simple calculations and the observed
similarities between CFT and the parton
cascade if we discuss it in terms of entropy.

Follow the example of Max Planck,
we look at DIS from the point
of ENTROPY
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Ideas and results (1) :

e In toy (141) dimensional model as well as in there full QCD cascade
we computed von Neumann entropy S(x);

e We found that S(x) = In (wG (w, Qz) )

where =G (x, Q?) is the multiplicity of partons(gluons);

e This equation implies that all microstates of the system are equally
probable and S is maximal;

e This equipartitioning of microscopic states that maximizes the von
Neumann entropy corresponds to the parton saturation;
e S diverges logarithmically at x — 0; S(z) = Aln (1) = Aln (%)

with L = 1/(mzx) and € = 1/m < proton’s Compton wave length,
A is the BFKL intercept A = 2.8ag;
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Ideas and results (2) :

e Reminds the expression for EE in (14+1) CFT: S(x) = gln%

e We argue that this agreement is not coincidental, and propose that
the parton distributions, and the entropy associated with them, arise
from the entanglement between the spatial domain probed by DIS and
the rest of the target;

e The maximal value of the entanglement entropy attained at small x
implies that the corresponding partonic state is maximally entangled;

e Unlike the parton distribution, the EE is an appropriate observable
even at strong coupling when the description in terms of quasi-free
partons fails.
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QM of parton entanglement, as | understood it

A is the region that we measure in DIS, The physical sates are in
_H—If)qert space(nA) .

B is a complementary region, unobserved state €¢ HZ(np)

the entire space: ANB. the composite system in HARQHB

| Wap) = Zcij|¢f)®|¢f); matrix C' has n 4 X np dimension
]

If y€ A and z € B the density matrix:

p(y,z,y,2") =Wap (y,z) ¥ 5 (y,2’) < pure state with S=0.

pa(y,y) = /dz p(y,z,y',2) = trepas
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Schmidt decomposition theorem:

[Wap)=)  an|PH)|¥])

where a,,=Vv CC'T.

e o o pa = trp pAB:Zozfl |2 (T2 e o o

where afb = p,<— the probability of a state with n partons.

e o o Svon Neumann — — Z Pn In DPn e o o

S = Shannon entropy (EE) for probability distribution {py, p2,...,pn}
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1 + 1 toy model of non-linear QCD evolution:

BFKL Pomeron:

do (Y) _
o = Ao (Y) where A =28asgs
dY
dB,(Y)/dY = -A
dP,, (Y
° dl(/ ) = —AnP, (Yl + gn — 1) AP, 4 (Yz

depletion of the probability growth due to splitting

Generating function:

Z(Y,u) = > P,(Y)u", with Z(Y =0,u) = u; Z(Y,u=1) =1
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Equation:

0Z(Y,u) __ 0Z(Y,u) Z(U(Y))\ 8z __ 2
o 5y~ = —Au((l—u) "5 > 82 = —A(Z — Z?)

For scattering amplitude
N({Y;v)=1—Z(Y,1—v) — dN(Y)/dY = A (N — N?)

Solution:

ue AY —AY oo n —AY\M
o Z(Y,u) = Fu(c—AY_-D) = ue S, u (1 — e )

e P, (Y) = e 2Y (1 — e 2Y)"

Gluon sructure function:

G (xz) = (n) = Y nP,(Y) = u

dZ (Y, u) Ay (1)A
- @€ ]
du

n u=1
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Entropy: Svon Neumann = —)_,, PnIn(pn) = — > P, (Y)In(P, (Y))

S=—->,e (1 - e_AY)n_l(—ln (e*Y —1) +n In (1—e_AY)>

(e 1) Zhu= 1) 4 I (i) ulZg

—e

( In (zG(x)) if AY >>1
SV.N. — 3
xG(x) —xG(xz=x)) xG(x) —xG(r=x)) .
L —In [ G (xrx=x() . } [ G (x=xq) : if AY<<1

DIS as a probe of entanglement E. Levin 12



Multiplicity distributions: (N = 7 — 1)

P,(Y) = e AY (1 — e—2AY)"7! =

Negative binomial distribution:

on — pNBD (5 7 p) — ( r ) F(n+r)( (n) )

o; r+(n) n!T(r) \r+ (n)

m

Oin n
with r = 1(number of failures) and p = N/ (N 4+ 1) = 1 — 1/7n(probability of success)

_I_
Cumulants: C; = <n?1> /< n > = (u%)qZ(Y, u)

_ _ =1
N 6(n —1)n +1 u
C; = 2—-1/n; C3 = ( ﬁ2) ;

(12A(A — 1) + 1)(2A — 1) Cs = (A — 1)(120R%(A — 1) + 307) + 1

Cy =
n3 n4

Predictions: Cy ~ 1.83, C53 ~ 5.0, C,; ~ 18.2 and C5 ~ 83.

Experiment: CS™ = 2.040.05, CJ™® = 5.940.6, CS = 2142, and CJ = 90+19
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EE from the (3 + 1) dimensional Balitsky-Kovchegov equation:

OP, (Y;7r1, T2...7;...7Tn)

n
as 0 (Y) - _Zw(ri)Pn(Y;7“1,?"2...7‘7:...')"n)

1=1

S~ (it )

2
(2m) 7 r2

+ Po_1(Ysri,roe. o (Fy + Pn) .o orpn_1)

=1
Probability for one dipole to survive depends on the dipole size:

2
_ . as r; 2 7 _ 2, 2
¢ ag w(r;) =agw; = 2 /p (7 — 11.,)2 2 d°r’ = ag In(r;/p”)

5 = a2
The probability for a decay |77 + 72| — r1+7r2: @ K (r1, r2|r] + 72) = 275; ("1 ;_ ";2)
172
® For n = 1 equation has the solution P; (Y;7ry) = 0 (7 — 71) e~ asw(r)Y

. > /HdzriPn (Y;{r;}) =1

i.e. the sum of all probabilities is equal to 1.
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n (Yi{r;}) = P, (w;{r;})( Mellin image)

o Po(Yi{r}) = [TiXde,wasY p (w;{r;})

ico 2w€
o Pp(wi{r;}) =

— D wi P (w; {r;}) + Py Z 3.5  In-1 (w; {rs, 75 = (Fj + ™n)})
- o ik

n

o Paird) =2nrts—m) (52) 1

=1

1
— {2
7

n (W, {w;})

T,

n n—1
o Qn (w, {w;}) = — (Z wi) Qn (W, {w;}) + Z Qp—1 (‘-’"a {wiawjn})

i=1 j=1
Recurrent equation:

1
w + Z?:l wg’

o Qp(w,{w;}) = (n—1)Q,_ (wa {w;, wn—l,n})

Failed to solve in a general case but
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Large dipole —— one large 4+ one small dipoles. |7; + 7| — 7r; while 7, < 7r;.
. 22 22 )
Summation In" (ri Qs) for 7Q5 > 1;
- 1 - 1

° Qp (wy,{w;}) = (n—1)! . = (n —1)! .
311 w + Z.lyzl Wi 311 w + Zgzl 21

o P,(Yi{r;}) = 27rr25(7_“’—771)< )nﬁ /GHOO dw wasY o (4 fw:)

/ﬁd%i Pp (Y;{r;}) = ' dw s /H dz; Qn (w, {z;})
=1 .
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e+100
o o / dw waSYQn (w,{z;})
e—ico 2T
1 n n n n
:(dsY>n/O Hdaiexp{— z1+z22ai—|—z32ai—|—...—i—leai—l—...—|—znan 0_£5Y}
=2 =2 =3 1=l
1 n n n n
:(&SY)n/O Hdaiexp{— zl-l-anZz,L--l-an_lZzz--l-...-I—alZzi-I-...-I-znan &SY}
1=2 1=2 1=3 1=l
—saz Y n 1 — e (Z{":z Zz) agyY o de Y n n
=e *S*A1 T ] s = (agY)"e  ¥S*1T J] ®(agY > z

° /};Il dz; Pn (Y;{z;}) =

= ag z1Y tn tg 1 =
e S zlY/ ® (tn) dtn/ dt,, 1 ® (tn_l) / dtg ® (t3) = —E" (agz1Y) e &S zY
0 0 0 n!

where t; = agY Z?:z z] and

t
E(t) = / <I>(t’) dt'’=C + T (0,t) + Int
0

= (5 — t if t < 1;
=@) = In (1/t) ift > 1.

2] > 29 > oo >z > 21> .. >0
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Gibbs formula:

S = — i ﬁ d*r; P, (Y;{r;}) In (Pn (Y5 {"“7:}))

n=1 =1

For Y >1:

S = w(r)agY Z / H dzri Pn (Y —y;{r;})
n=1 =1 y
=1
—agxY v [T - & n n (1_ o (Sii=)asY
_ e S*1 Z/Hdzi{Zzi—Zln Zzl }H Zn-z
n=1" =2 i=2 i=2 l=1 ; =i <l

\ 7

< 1
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DIS as a probe of entanglement

10}

— Firsttermin S

R Second term in S

- ——
- ——
-

Qg =z Y

Zamolodchikov, JETP letters, 43,565(1986)
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Once more: results (discussion)

Al: The entropy originates from the entanglement between the spatial domain
probed by DIS and the rest of the target, whereas the entire proton is in a pure quantum
state with zero entropy.

A2: Parton distributions have a well-defined meaning only for weakly coupled
partons at large momentum transfer Q? — but the entanglement entropy is a universal
concept that applies to states at any value of the coupling constant.

A3: Unlike the parton distributions, the entanglement entropy is subject to strict
bounds — for example, if the small x regime is described by a CFT, the growth of parton
distributions should be bounded by G (x) < const /3,

A4: If the second law of thermodynamics applies to entanglement entropy then the
entropy of a final hadronic state cannot be smaller than the entropy S(x) accessed at a
given Bjorken . The correspondence between the number of partons in the initial state
and the number of hadrons in the final state is in accord with the “parton liberation”

and “local parton-hadron duality” pictures.
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1. The entropy is a useful measure of information that can be
obtained in an experiment.

2. The entropic approach underlines the importance of
measuring the hadronic final state of DIS.

3. We encourage experimentalists to combine the
measurements of the DIS cross sections with the determination
of hadronic final state at the future facilities.

4. The determination of the Shannon entropy of hadrons in
the final state of DIS can be done using the event-by-event
multiplicity measurements.

5. The “asymptotic” small x regime in which our formula
begins at < 1073, It is accessible to the current and planned

experiments, and can be investigated at the future Electron-lon
Collider (EIC).
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