The Gribov confinement prescription in a Lorentz breaking scenario

Igor F. Justo

Instituto de Física y Matemática, UACh - Universidad Austral de Chile

Non-Perturbative Aspects of QFT Loewe's 65 Fest 05/12/2017

Outline

The Gribov-Zwanziger action

Yang-Mills quantization Its non-local version The gap equation and gauge field propagator

Why breaking Lorentz symmetry?

Why should we care about Lorentz symmetry breaking?

Restricting the Lorentz SB model to the Gribov region

The gauge propagator Regimes of the theory

Final words

Yang-Mill quantization / Gribov ambiguities

Restricting to Gribov's region

- Analytical computations require gauge fixing;
- The Landau gauge: Lorentz covariant; the Faddeev-Popov (FP) operator is Hermitian

$$\begin{split} Z_{\text{FP}} &= V \int \mathscr{D} A^U \, \delta(f^a) |\text{det} - \partial D| \, \mathrm{e}^{-S_{\text{YM}}} \\ &\neq \int \mathscr{D} A \mathscr{D} c \mathscr{D} \overline{c} \, \mathrm{e}^{-S_{\text{FP}}} \,, \end{split}$$

with

$$S_{\text{FP}} = S_{\text{YM}} + \int d^4x \left\{ \overline{c}^a(x) \partial_\mu D_\mu^{ab} c^b(x) + \frac{(\partial_\mu A_\mu^a)^2}{2\xi} \right\}$$

Though, the gauge is not completely fixed

The Gribov-Zwanziger action

Gribov's proposal: restrict the path integral of the gauge field to the region

$$\Omega \ = \ \left\{ A_{\mu}, \ \partial_{\mu}A_{\mu} \ = \ 0, \ -\partial_{\mu}D_{\mu} \ \geq \ 0 \right\}$$

The FP operator is closely related to the **inverse of the Ghost two** point function

- Gribov: $\langle \overline{c}^a(k)c^b(-k)\rangle \approx \frac{1}{k^2}\left(\frac{1}{1-\sigma(k,A)}\right)\delta^{ab}\,, \ 1-\sigma(k,A)\leq 0$
- Zwanziger: It amounts to enforce the positivity over the trace of the lowest lying eigenvalue of the FP operator (λ_{min})
- Both formulations are equivalents¹

¹Capri et. al Phys.Lett. B719 (2013) 448-453

The GZ action

The Gribov-Zwanziger action

Zwanziger:

- Compute perturbativelly all lowest lying eigenvalue of the FP operator
- Take the trace over all of them and impose positivity over the trace:

$$\operatorname{Tr}\Lambda = 2\left(\frac{2\pi}{L}\right)^2 \left(d(N^2-1) - \frac{1}{V}H(A)\right) > 0$$

with the horizon function

$$H(A) = g^2 \int d^4x d^4y \ f^{abc} f^{adl} \ A_{\mu}^b(x) \left[\partial_{\nu} D_{\nu}^{-1} \right]^{cl} A_{\mu}^d(y) \delta(x-y)$$

The restricted partition function

$$Z_{\rm GZ} = V \int \mathscr{D} A^U \, \theta(dV(N^2-1) - H(A)) \, e^{-S_{\rm FP}}$$

The GZ action

The Gribov-Zwanziger action: The gap equation

In the thermodynamic limit $\theta \rightarrow \delta$

$$Z_{
m GZ} \ = \ V \int \mathscr{D} A^U \, \exp \left\{ - \, S_{
m FP} + \gamma^{*4} H(A) + 4 \gamma^{*4} \, V(N^2 - 1)
ight\} \ = \ {
m e}^{- \, V \mathscr{E}_{
m v}}$$

satisfying the gap equation (a consistency condition of the saddle-point approx.)

$$\frac{\partial \mathscr{E}_{v}}{\partial \gamma^{2}} = 0$$

That amounts to

$$\langle H(A) \rangle = 4(N^2 - 1)$$

The Localized Gribov-Zwanziger action

In order to localize the GZ action BRST doublets of fields should be added

$$\begin{split} S_{GZ} &= S_{YM} + \int d^4x \Biggl(\bar{\varphi}_{\mu}^{ac} (\partial_{\nu} D_{\nu}^{ab}) \varphi_{\mu}^{bc} - \bar{\omega}_{\mu}^{ac} (\partial_{\nu} D_{\nu}^{ab}) \omega_{\mu}^{bc} \\ &- g f^{amb} (\partial_{\nu} \bar{\omega}_{\mu}^{ac}) (D_{\nu}^{mp} c^p) \varphi_{\mu}^{bc} \Biggr) + \gamma^{*2} \int d^4x \Biggl(g f^{abc} A_{\mu}^{a} (\varphi_{\mu}^{bc} + \bar{\varphi}_{\mu}^{bc}) \Biggr) \\ &- 4 \gamma^4 V (N^2 - 1) \end{split}$$

with

$$s\overline{\omega} = \overline{\varphi}$$
 $s\overline{\varphi} = 0$
 $s\varphi = \omega$ $s\omega = 0$

The gap equation in a general YM theory

Considering only quadratic terms in the fields, within perturbation theory

$$Z_{GZ}^{\text{quad}} = \int [dA] \left[\det -\partial^2 \right] \exp \left\{ -\frac{1}{2} \int \frac{d^d q}{(2\pi)^d} A_{\mu}^a(q) K_{\mu\nu}^{ab} A_{\nu}^b(-q) - 4V \gamma^{*4} (N^2 - 1) \right\}$$
$$= e^{-V \mathcal{E}_{\nu}}$$

with

$$\mathcal{K}^{ab}_{\mu \nu} \; = \; \delta^{ab} \left[\left(q^2 + rac{2 \mathcal{N} g^2 \gamma^{*4}}{q^2}
ight) \delta_{\mu
u} + \left(rac{1}{lpha} - 1
ight) q_\mu q_\nu
ight]$$

So that

$$\mathscr{E}_{_{\boldsymbol{V}}} \; = \; -4\gamma^4(\mathit{N}^2-1) + \frac{1}{\mathit{V}} \ln \gamma^4 + \frac{3(\mathit{N}^2-1)}{4} \int \frac{d^4q}{(2\pi)^4} \ln \left(q^2 + \frac{2\gamma^4\mathit{N}g^2}{q^2}\right)$$

The gap equation and gauge field propagator

The gap equation finally reads

$$\frac{d\mathscr{E}_{v}}{d\gamma^{2}}\bigg|_{\gamma=\gamma^{*}} = 0$$

$$1 = \frac{3Ng^{2}}{8} \int \frac{d^{d}p}{(2\pi)^{d}} \frac{1}{p^{4} + 2\gamma^{*4}Ng^{2}}$$

• Taking the inverse of $K_{\mu\nu}^{ab}$ and then recovering the Landau gauge $\alpha \rightarrow 0$

$$\langle A_{\mu}^{a}(k)A_{\nu}^{b}(-k)\rangle = \delta^{ab}\frac{k^{2}}{k^{4}+\gamma^{4}}P_{\mu\nu}(k)$$

$$= \delta^{ab}\frac{1}{2}\left(\frac{1}{k^{2}+i\gamma^{*2}}+\frac{1}{k^{2}-i\gamma^{*2}}\right)P_{\mu\nu}(k)$$

Why should we care about Lorentz symmetry breaking?

It started with V. A. Kostelecky and S. Samuel, Phys. Rev. D 39 (1989) 683.

"Spontaneous Breaking of Lorentz Symmetry in String Theory,"

Though it should occur at the order of the Planck scale. 10¹⁹ GeV.

- It is possible that some IR effects could be due to Lorentz symmetry breaking started at the Planck level;
- Some very high precision experiments on IR effects searching for the breaking of the Lorentz Invariance are on development Y. Michimura, et al., Phys. Rev. Lett. 110 (2013) no.20, 200401
 - F. Allmendinger et al., Phys. Rev. Lett. 112 (2014) no.11, 110801
- After Kostelecky's paper more than 500 works have cited Lorentz symmetry breaking, thus it is worth have a look;) V. Vasileiou, J. Granot, T. Piran and G. Amelino-Camelia, Nature Phys. 11 (2015) no.4, 344.

 In the 90s Carroll, Field and Jackiw S. Carroll, G. Field, R. Jackiw, Phys. Rev. D 41, 1231 (1990) proposed the first consistent effective model of Lorentz symmetry breaking by introducing a constant axial vector field a_{μ} defining the preferred direction.

$$S_{LB} \,=\, \int d^4x \left[\frac{1}{4} \left(F_{\mu\nu}^a \right)^2 - \frac{i\xi}{2} a_\rho \varepsilon_{\rho\mu\nu\lambda} \left(A_\nu^a \partial_\lambda A_\mu^a - \frac{2}{3} g A_\mu^a A_\nu^b A_\lambda^c f^{abc} \right) \right]$$

Still has gauge invariance (by total derivative)

The gauge fixed action reads

$$S = S_{LB} + \int d^4x \left(\frac{(\partial_{\mu} A_{\mu})^2}{2\alpha} + \bar{c}^a \partial_{\mu} D_{\mu}^{ab} c^{ab} \right)$$

it is plagued by FP's zero modes

The Gribov restriction

The restricted partition function reads

$$Z = \mathcal{N} \int \mathcal{D}A^U \, \theta(dV(N^2 - 1) - H(A)) \, e^{-S}$$

or even

$$Z = \mathcal{N} \int \mathcal{D}A^U \exp \left\{ -S - \gamma^4 H(A) + 4\gamma^4 V(N^2 - 1) \right\}$$

- I First, we should localize the action (including the auxiliary fields ϕ, ϕ and $\bar{\omega}, \omega$
- Consider only quadratic terms of the action, and the constant term (working within perturbative regime)

The partition function then reads

$$Z = \mathcal{N} \int \mathcal{D}\phi \exp \left\{ \int \frac{d^4k}{(2\pi)^4} \left(-\frac{1}{2} A_{\mu}^a(k) K_{\mu\nu}^{ab} A_{\nu}^b(-k) - \bar{c}^a P^{ab} c^b \right) \right\}$$

with

$$\mathcal{K}^{ab}_{\mu\nu} \; = \; \delta^{ab} \left(rac{k^4 + 2g^2N\gamma^4}{k^2} \delta_{\mu\nu} + \left(rac{1}{lpha} - 1
ight) k_\mu k_
u - \xi \, a_
ho \, \epsilon_{
ho
u\mu\lambda} \, k_\lambda
ight)$$

and

$$P^{ab} = \delta^{ab} p^2$$

• In order to compute the gauge field propagator the inverse of $K_{\mu\nu}^{ab}$ should be computed

The gauge propagator

Restricting to Gribov's region

The Landau gauge is recovered in the limit $\alpha \to 0$

$$\begin{split} \langle A_{\mu}^{a}(k)A_{\nu}^{b}(-k)\rangle & = & \delta^{ab}F(k)\left\{\left(\delta_{\mu\nu}-\frac{k_{\mu}k_{\nu}}{k^{2}}\right)+\frac{k^{4}}{(k^{4}+\gamma^{4})}a_{\beta}\varepsilon_{\beta\nu\mu\alpha}\frac{\xi\,k_{\alpha}}{k^{2}}\frac{k^{6}}{(k^{4}+\gamma^{4})^{2}}\right. \\ & \left. +\left[\frac{(\xi\,a\cdot k)k_{\mu}}{k^{2}}-\xi\,a_{\mu}\right]\left[\frac{(\xi\,a\cdot k)k_{\nu}}{k^{2}}-\xi\,a_{\nu}\right]\right\} \end{split}$$

- If $a_u \rightarrow 0$, the GZ results is recovered
- The red term is new compared with 3D Yang-Mills_Chern-Symons model 2 etopological CFJ term

²F. Canfora, A. J. Gmez, S. P. Sorella and D. Vercauteren, Annals Phys. **345** (2014) 166

Restricting to Gribov's region

The gauge propagator

Regimes of the theory

- By looking at the parameter space of (ξ, M) we could find regions where the gauge propagator has physical and non-physical one-particle interpretation;
- Analysis of the poles through the overall factor

$$F(k) = \frac{(k^4 + \gamma^4)k^2}{(k^4 + \gamma^4)^2 + k^6 M^2}$$

This is qualitatively equivalent to the results of F. Canfora, *et al.*Annals Phys. **345** (2014) 166:

The gauge propagator

The poles can be read of from

$$P(k^2) = k^8 + 2Gk^4 + G^2 + M^2k^6$$

= $(k^2 + m_1^2)(k^2 + m_2^2)(k^2 + m_3^2)(k^2 + m_4^2)$

Restricting to Gribov's region

The regions can be identified through the discriminant

$$\Delta = 256G^5M^4 - 27G^4M^8$$

Analysing the roots we have the following possible regions:

- 1. $G < 27 \left(\frac{M}{A}\right)^4 (\Delta < 0)$ we have two real roots and two complex conjugate roots.
- 2. $G > 27 \left(\frac{M}{4}\right)^4 (\Delta > 0)$ we have all four roots to be real or complex.
 - G and M are redefinitions of the Gribov parameter and of the topological mass ξa_{ii}

Final words

Outcomes

- We have studied the rule of Gribov copies in an effective Lorentz broken model:
- We could see that the behavior of the gauge propagator strongly depends on the preferred direction (given by a_{μ});
- Regions in the parameter space (ξ and M) where the gauge propagator displays (non)physical one-particle interpretation is equivalent to the results of F. Canfora, et al. Annals Phys. 345 (2014) 166

Works in progress

- $\kappa_{\mu\rho}^{\nu\lambda}F^{\mu\rho}F_{\nu\lambda}$ in • Take into account the aether-like term, such as Yang-Mills;
- Study three-point functions of the gauge field up to one-loop correction

Thanks for all of you:)

Restricting to Gribov's region