Meson-Hybrid Mixing in 1⁻⁻ Heavy Quarkonium from QCD Sum-Rules

Alex Palameta, PhD Candidate
University of Saskatchewan, Canada
December 2017

Presentation based on arXiv: 1707.00063

Motivation

- Mesons:
 - Constituent quark model, $q\overline{q}$

Gell-Mann & Zweig (1964)

- Hybrids:
 - Hadrons with explicit quark and gluon constituents, $q\overline{q}g$
 - Allowed by QCD

Horn & Mandula (1978)

Outside of the constituent quark model

Meyer & Swanson (2015)

- Not yet definitively observed
- ightharpoonup Maybe hybrid states exist as quantum mechanical superpositions of $q\overline{q}$ and $q\overline{q}g$.
- ightharpoonup Perhaps the resonances we've assigned to conventional $q\overline{q}$ states are actually mixed.

Currents & Cross-Correlator

• Currents: $j_{\mu}^{(\mathrm{m})} = \overline{Q}\gamma_{\mu}Q$ $j_{\nu}^{(\mathrm{h})} = g_{s}\overline{Q}\gamma^{\rho}\gamma^{5}t^{a}\widetilde{G}_{\nu\rho}^{a}Q \quad \text{with} \quad \widetilde{G}_{\nu\rho}^{a} = \frac{1}{2}\epsilon_{\nu\rho}^{\omega\zeta}G_{\omega\zeta}^{a}$

where here Q is a heavy quark field (i.e. charm or bottom)

• Cross-correlator:
$$\Pi_{\mu\nu}(q)=i\int d^dx\; e^{iq\cdot x}\langle\Omega|T[\,j_\mu^{(\rm m)}(x)\;j_\nu^{(\rm h)}(0)]|\Omega\rangle$$

$$=\left(\frac{q_\mu q_\nu}{q^2}-g_{\mu\nu}\right)\Pi(q^2)$$

where Π probes 1^{--} states which couple to the $j_{\mu}^{(\rm m)}$ and $j_{\nu}^{(\rm h)}$ currents, i.e. mixing

Cross-Correlator Calculation

- Calculate the cross-correlator within the operator product expansion (OPE) to leading order (LO).
- Include OPE terms proportional to the 4d and 6d gluon condensates and the 6d quark condensate given by:

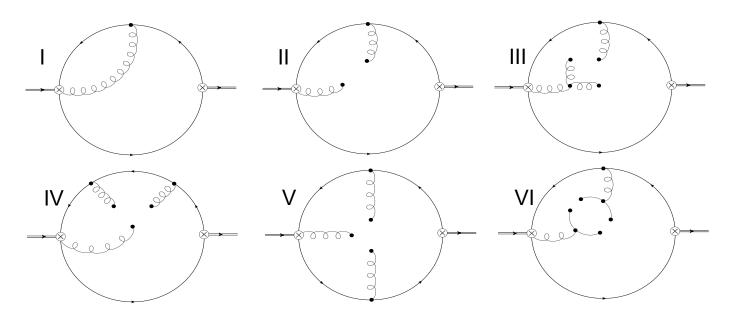
$$\langle \alpha G^2 \rangle = \alpha_s \langle : G^a_{\omega\phi} G^a_{\omega\phi} : \rangle$$

$$\langle g^3 G^3 \rangle = g_s^3 f^{abc} \langle : G^a_{\omega c} G^b_{co} G^c_{o\omega} : \rangle$$

$$\langle J^2 \rangle = \frac{2}{3} \kappa g_s^4 \langle : \overline{q}_i^{\alpha} q_i^{\alpha} : \rangle^2$$

 Each of these non-perturbative corrections is the product of a perturbatively computed Wilson coefficient and one of these QCD condensates.

Diagrams



The cross-correlator will now take the form:

$$\Pi = \Pi^{(I)} + \Pi^{(II)} + \Pi^{(III)} + \Pi^{(IV)} + \Pi^{(V)} + \Pi^{(VI)}$$

- Diagrams arranged in order of magnitude of contribution to LSR.
- Resulting divergent integrals handled using dimensional regularization in $D=4+2\epsilon$ dimensions.

Renormalization

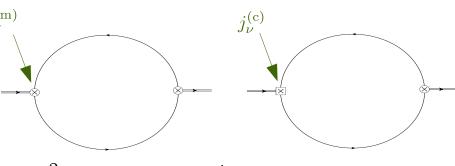
•
$$\Pi^{(\mathrm{I})}(q^2) = \frac{2\alpha_s m^4 z (1+4z) \,_2 F_1\left(1,1;\frac{5}{2};z\right)}{9\pi^3 \epsilon} + \cdots$$
 where $z = \frac{q^2}{4m^2}$

- → Non-polynomial divergence requires renormalization
- $j_{
 u}^{(\mathrm{m})}$ is renormalization group invariant.

•
$$j_{\nu}^{(\mathrm{h})}
ightarrow j_{\nu}^{(\mathrm{h})} + \frac{C_1}{\epsilon} j_{\nu}^{(\mathrm{m})} + \frac{C_2}{\epsilon} j_{\nu}^{(\mathrm{c})}$$
 with $j_{\nu}^{(\mathrm{c})} = \overline{Q} i D_{\nu} Q$

 C_1 and C_2 chosen to remove non-polynomial divergences.

 Renormalization induced diagrams:



$$ightharpoonup C_1 = -rac{10m^2lpha_s}{9\pi}$$
 and $C_2 = rac{4mlpha_s}{9\pi}$

Renormalized Cross-Correlator

$$\begin{split} \Pi^{(\mathrm{I})}(z) &= \frac{2\alpha_s m^4 z}{81\pi^3} \Biggl(18(z-1)\,_3F_2\bigl(1,1,1;\tfrac{3}{2},3;z\bigr) - 2z(4z+1)\,_3F_2\bigl(1,1,2;\tfrac{5}{2},4;z\bigr) + \\ &\qquad \qquad 3 \biggl(3(4z+1)\log\left(\frac{m^2}{\mu^2}\right) + 26z+6\biggr)\,_2F_1\bigl(1,1;\tfrac{5}{2};z\bigr)\biggr) \\ \Pi^{(\mathrm{II})}(z) &= \frac{z\Bigl(3-{}_2F_1\bigl(1,1;\tfrac{5}{2};z\bigr)\Bigr)}{18\pi(1-z)} \Bigl\langle \alpha G^2 \Bigr\rangle \\ \Pi^{(\mathrm{III})}(z) &= \frac{\Bigl(-2-5z+4z^2+(2-7z+10z^2-4z^3)\,_2F_1\bigl(1,1;\tfrac{5}{2};z\bigr)\Bigr)}{2304\pi^2m^2(1-z^3)} \Bigl\langle g^3G^3 \Bigr\rangle \\ \Pi^{(\mathrm{IV})}(z) &= \frac{\Bigl(-22+41z-16z^2+(10-25z+22z^2-8z^3)\,_2F_1\bigl(1,1;\tfrac{5}{2};z\bigr)\Bigr)}{4608\pi^2m^2(z-1)^3} \Bigl\langle g^3G^3 \Bigr\rangle \\ \Pi^{(\mathrm{V})}(z) &= \frac{\Bigl(-15+12z+(3-2z)\,_2F_1\bigl(1,1;\tfrac{5}{2};z\bigr)\Bigr)}{4608\pi^2m^2(z-1)^2} \Bigl\langle g^3G^3 \Bigr\rangle \\ \Pi^{(\mathrm{VI})}(z) &= \frac{2\Bigl(2+5z-4z^2+(-2+7z-10z^2+4z^3)\,_2F_1\bigl(1,1;\tfrac{5}{2};z\bigr)\Bigr)}{81m^2(z-1)^3} \Bigl\langle g^3G^3 \Bigr\rangle \end{split}$$

Laplace Sum-Rule (LSR)

• The correlator satisfies the dispersion relation

$$\Pi(Q^2) = \frac{Q^6}{\pi} \int_{4m^2}^{\infty} \frac{\text{Im}\Pi(t)}{t^3(t+Q^2)} dt + \cdots, \quad Q^2 > 0$$

Unsubtracted LSR:

$$R_0(\tau) = \frac{1}{\tau} \lim_{\substack{N,Q^2 \to \infty \\ \tau = N/Q^2}} \frac{(-Q^2)^N}{\Gamma(N)} \left(\frac{d}{dQ^2}\right)^N \left[-Q^2 \Pi(Q^2) \right] = \int_{t_0}^{\infty} e^{-t\tau} \frac{1}{\pi} \text{Im} \Pi(t) dt$$

Borel transform

Apply resonance plus continuum model:

$$\frac{1}{\pi} \operatorname{Im}\Pi(t) = \rho^{\text{had}}(t) + \frac{1}{\pi} \operatorname{Im}\Pi^{\text{OPE}}(t)\theta(t - s_0)$$

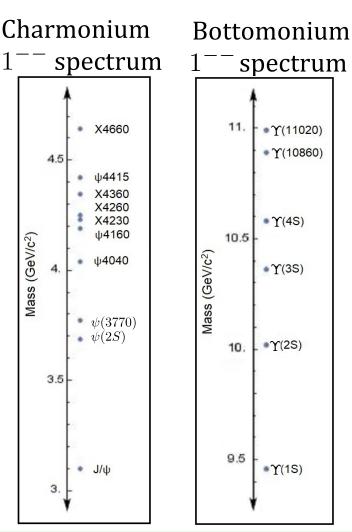
Continuum subtracted LSR:

$$R_0(\tau, s_0) = R_0(\tau) - \int_{s_0}^{\infty} e^{-t\tau} \frac{1}{\pi} \text{Im}\Pi^{\text{OPE}}(t) dt = \int_{t_0}^{s_0} e^{-t\tau} \rho^{\text{had}}(t) dt$$

Modelling 1⁻⁻ Heavy Quarkonium

- Replace $\int_{t_0}^{s_0} e^{-t\tau} \rho^{\mathrm{had}}(t) dt$ with several different resonance models
- Chosen models depend on experimental data
- Models consist of between 1 and 4 wide and/or narrow "resonances"
- Wide "resonances" cluster experimental results that are close together

(All values from PDG)



Analysis

The hadronic side of the LSR now takes the form:

$$R_0(\tau, s_0) = \sum_i \xi_i F_i(\tau) , \quad i \in \{1, 2, 3, 4\}$$

- $\rightarrow s_0$ and ξ_i (mixing parameters) are extracted as best fit parameters
 - ξ_i are a measure of mixing in a given "resonance" or "cluster"
- \rightarrow F_i represent either narrow or wide "resonances" in our model given by:

$$F_i(\tau) \to e^{-M_i^2 \tau}$$
 or $F_i(\tau) \to e^{-M_i^2 \tau} \frac{\sinh(\Gamma_i M_i \tau)}{\Gamma_i M_i \tau}$

Example: (2 narrow, 1 wide model, used in charmonium sector)

$$R_0(\tau, s_0) = \xi_1 e^{-M_1^2 \tau} + \xi_2 e^{-M_2^2 \tau} + \xi_3 e^{-M_3^2 \tau} \frac{\sinh(\Gamma_3 M_3 \tau)}{\Gamma_3 M_3 \tau}$$

Borel Window

- <u>Lower bound:</u> Require resonance contribution be no less than 10% that of the total (resonance + continuum).
- <u>Upper bound:</u> Require that the perturbative contribution be no less than 3 times that of the 4d contribution and 9 times that of the 6d contribution.

(GeV^{-2})	$ au_{ m min}$	$ au_{ ext{max}}$		
Charmonium	0.1 ± 0.05	0.6 ± 0.05		
Bottomonium	0.01 ± 0.005	0.2 ± 0.005		

• Borel window then discretized and χ^2 minimization used to find the optimal s_0 and the ξ_i (mixing parameters) are generated

QCD Parameters

Charmonium Parameters

μ	$(1.275 \pm 0.100) \; \mathrm{GeV}$
$\alpha(M_{\tau})$	(0.330 ± 0.014)
\overline{m}_c	$(1.275 \pm 0.025) \; \mathrm{GeV}$

Bottomonium Parameters

μ	$(4.18 \pm 0.10) \text{ GeV}$
$\alpha(M_Z)$	(0.1185 ± 0.0006)
\overline{m}_b	$(4.18 \pm 0.03) \text{ GeV}$

Condensates

$\langle \alpha G^2 \rangle$	$(0.075 \pm 0.02) \text{ GeV}^4$
$\langle g^3G^3\rangle$	$((8.2 \pm 1.0) \text{ GeV}^2) \langle \alpha G^2 \rangle$
$\left\langle :\overline{q}_{i}^{lpha}q_{i}^{lpha}: ight angle$	$-(0.23 \pm 0.03)^3 \text{ GeV}^3$

Charmonium: Models & Results

Model			Fit		Results			
m_1 , Γ_1 (GeV)	m_2 , Γ_2 (GeV)	m_3 , Γ_3 (GeV)	s_0 (GeV ²)	$\chi^2 \times 10^6$ (GeV ¹²)	ζ (GeV ⁶)	$\frac{\xi_1}{\zeta}$	$\frac{\xi_2}{\zeta}$	$\frac{\xi_3}{\zeta}$
$\frac{(\text{GeV})}{3.10, 0}$	-	- -	12.5	4.33	0.514 ± 0.021	1	_	
3.10, 0 $3.10, 0$	3.73, 0 3.73, 0	$\frac{1}{4.30}$, 0	13.9 24.1	$3.17 \\ 0.164$	$0.734 \pm 0.040 2.88 \pm 0.25$	$0.726 \pm 0.034 \\ 0.215 \pm 0.012$	0.274 ± 0.034 -0.022 ± 0.049	$-$ 0.762 \pm 0.030
3.10, 0 $3.10, 0$	3.73, 0 $3.73, 0.05$	4.30, 0.30 $4.30, 0.30$	$24.2 \\ 24.2$	$0.162 \\ 0.162$	2.97 ± 0.26 2.97 ± 0.26	0.210 ± 0.012 0.210 ± 0.012	-0.032 ± 0.048 -0.032 ± 0.048	$0.758 \pm 0.025 \\ 0.758 \pm 0.025$
3.10, 0 $3.10, 0$	-	4.30, 0 $4.30, 0.30$	23.7 23.6	$0.184 \\ 0.204$	2.68 ± 0.25 2.66 ± 0.25	0.228 ± 0.019 0.228 ± 0.020	_	0.772 ± 0.019 0.772 ± 0.019
J/ψ	J/ψ $\psi(2S)$ $\psi(3770)$ V state cluster $\psi(4040) \to X(4660)$ $\chi = \sum_{i=1}^{n} \xi_i $ Ratios of mixing parameters ξ_i							

 $\overline{i=1}$

- Inclusion of the 3rd resonance cluster significantly improves the fit
- Inclusion of resonance widths has almost no impact on the fit
- Inclusion of a 4th resonance causes χ^2 to minimize at $s_0 \approx m_4^2$
- The 1st 2 resonance model also merges with the continuum
- Non-zero mixing in the J/ψ
- No evidence for mixing in the $\psi(2S), \psi(3770)$ cluster
- Large mixing parameter for the 4.3 GeV cluster
- Excluding the $\psi(2S)$, $\psi(3770)$ cluster still captures the physics

-True for bottomonium sector too

Note:

The X(4260) has often been interpreted as having significant hybrid content, our results are consistent with this idea.

Bottomonium: Models & Results

Model			Fit		Results			
m_1 , Γ_1 (GeV)	m_2 , Γ_2 (GeV)	m_3 , Γ_3 (GeV)	s_0 (GeV ²)	$\chi^2 \times 10^4$ (GeV ¹²)	ζ (GeV ⁶)	$\frac{\xi_1}{\zeta}$	$\frac{\xi_2}{\zeta}$	$\frac{\xi_3}{\zeta}$
9.46, 0 $9.46, 0$	10.02, 0	-	107 100	$42.0 \\ 36.5$	$ \begin{vmatrix} 140 \pm 1 \\ 189 \pm 9 \end{vmatrix} $	$1\\0.774 \pm 0.014$	$ -0.226 \pm 0.014$	_
9.46, 0 9.46, 0	$10.02 , 0 \\ 10.02 , 0$	$10.47 , 0 \\ 10.47 , 0.22$	132 132	$0.086 \\ 0.088$	$\begin{vmatrix} 1377 \pm 33 \\ 1375 \pm 32 \end{vmatrix}$	$0.203 \pm 0.002 \\ 0.203 \pm 0.002$	-0.380 ± 0.003 -0.379 ± 0.003	$0.418 \pm 0.005 \\ 0.418 \pm 0.005$
$\Upsilon(S1)$	$\Upsilon(S1) \qquad \Upsilon(S2) \qquad 2 \text{ state cluster} \\ \Upsilon(S3) \& \Upsilon(S4) \qquad \qquad \zeta = \sum_{i=1}^{n} \xi_i \qquad \qquad \text{Ratios of mixing parameters } \xi_i$							

- Inclusion of the 3rd resonance cluster significantly improves the fit
- Inclusion of resonance widths has almost no impact on the fit
- Inclusion of a 4th resonance causes χ^2 to minimize at $s_0 \approx m_4^2$
- The 2 resonance model also merges with the continuum
- No clearly unmixed states here
- We find non-zero mixing for all 3 resonances, the $\Upsilon(S1)$, the $\Upsilon(S2)$ and the 2 state cluster of the $\Upsilon(S3)$ & $\Upsilon(S4)$

As in the charmonium sector

Summary

• The best agreement between QCD and experiment is achieved when using 3 resonance fits in both the charmonium and bottomonium sectors.

Charmonium:

Mixing in the charmonium sector is well described by a 2 resonance model including the J/ψ and a 4.3 GeV resonance. This result is consistent with interpretations of the X(4260) as having significant hybrid content.

• Bottomonium:

The $\Upsilon(S1)$, $\Upsilon(S2)$ and the $\Upsilon(S3)$, $\Upsilon(S4)$ cluster all have non-zero mixing parameters.

Acknowledgements

Co-authors:

Josha Ho (University of Saskatchewan)

Dr. Derek Harnett (University of the Fraser Valley)

Dr. Tom Steele (University of Saskatchewan)

