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QCD sum-rules is a methodology for
computing hadron properties.

Propertie> Iltl?czzes, widths, mixing angles, decay

e M_esons, baryons, glueballs, hybrids,
diquarks, tetraquarks, pentaquarks,...

* M.A. Shifman (ed), Vacuum Structure and
QCD Sum-Rules, North-Holland (1992)

* S. Narison, QCD as a Theory of Hadrons,
Cambridge University Press (2004)
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QCD correlation functions satisfy
dispersion relations.

hadron spectral
/ function
3% ImlI(¢
H(q2):q_/ () dt + ...

to td (t — q2) \
hadron / subtraction

threshold constants

Quark-hadron duality! o~
UNIVERSITY e

oFTE HRASER VALLEY



The Borel transform suppresses
contributions from excited states.

Borel Borel
transform parameter
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The spectral function is split into
resonance and continuum intervals.

continuum threshold

resonances
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A single narrow resonance is often
used to model the ground state.

Predictions for s, and m,, extracted as best-fit
parameters.
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The correlator is computed using the
operator product expansion (OPE).

perturbation Wilson
theory coefficients

HQCD(q2) :I(q2)—I—Cj(q2)<ozG2>+C11(q2)<93G3>+~--
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The Borel transform has an integral
representation.

Im ()
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Divergent loop integrals are handled
through dimensional regularization.

d4p de
5 h D=4+2
/(2ﬂ)4 /(27T)D where —+ 2€

Dimensionally regularized integrals can be
difficult to compute due to:

* Number of external lines
* Number of loops
* Number of distinct masses (scales)
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pySecDec numerically calculates
dimensionally regularized integrals.

http://secdec.hepforge.org

1. Loop integrands written in terms of Feynman
parameters.

2. Sector decomposition used to isolate
divergences.

3. Monte Carlo integration used to numerically
evaluate Feynman parameter integrals.

__. ..—\.-;_

« S. Borowka et al., Comput. Phys. Commun. 222 (2018) 313 UNIUERS]TY - ﬂ'ag‘”
* G. Heinrich, Int. J. Mod. Phys. A23 (2008) 1457 OF THE ] | EFY



pySecDec has a number of useful
features.

* No limits on numbers of external lines,
loops, or quarks masses.

* No restrictions on external momenta.
* Computes finite and divergent parts.
* Provides error estimates.

* Works on scalar or tensor integrands.
* Fully open source.
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Can pySecDec be used to numerically
compute QCD Laplace sum-rules?

* Is the output of pySecDec accurate enough to
reliably compute the contour integral needed
to formulate QCD Laplace sum-rules?

* Are run-times reasonable, i.e., can we actually
apply the QCD sum-rules analysis
methodology?

 What sort of computing power is needed?
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pySecDec collapses three analytic
steps into one numerical step.

Wick's Fixed-point Numerator
theorem gauge algebra

4 Y N
Borel Expand Master
transform}¢{near D=4 integrals H TARCER
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As a test, we consider the o
charmonium hybrid correlator.

mSa
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Laplace sum-rules inherit
uncertainties from QCD parameters.

as (M)
1+ 2504132(7]:/-[ ) log(M3>

as(p) = where ags(M,) = 0.330 £ 0.014

l\3|}—\
N

me(p) = mc< &S(_'u) ) where m,. = (1.275 £ 0.025) GeV

as ()
(aG?) = (0.075 + 0.02) GeV*

(¢>G?) = ((8.2 £ 1.0) GeV?)({aG?)
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For Im II, the two computational
methods are in excellent agreement.

Analytic and pySecDec computations of Im I1
Im M (Gev?)
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Divergences near the branch point are
avoided by contour deformation.

Im(q°)
@%ﬁ Re(q?)
() Enlarge the
keyhole.
Re(q")
UNIVERm

ofe FRASER VALLEY



For M(t,s_), the two computational

methods are in excellent agreement.

Analytic and pySecDec Computations of M(t,s )

M (GeV)
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The s_to « limit can be computed
through adaptive step-sizing.

o | 144 |
/ te™' T ~ImII(t)dt ~ Y the™ """ —Imll(t,) Aty
4 n=>0

mZ(1+n) n = d
\ s, to o well-
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t, =n+4m2(1.027) Dbys,=120 GeV?
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Run-times needed to formulate QCD
Laplace sum-rules were reasonable.

* Calculations were run on a laptop.

* Calculations were completed in a matter of
hours (overnight?).

However, run-times did increase
significantly with increased integrand
“complexity.”
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Computing Laplace sum-rules using
pySecDec is convenient.

* Uncertainty due to pySecDec negligible
compared to that from QCD parameters.

* Calculations can be run on a PC or laptop.
* Run-times measured in hours (not weeks!).

* In principle, we can consider higher loop
diagrams, more external lines (i.e., 3-point
functions), and hadrons containing both a
charm and bottom quark.
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